University of Verona, School of Exercise and Sport Science,

Laurea magistrale in Scienze motorie preventive ed adattate (Laurea magistrale in Scienze dello sport e della prestazione fisica)

Metodologia delle misure delle attività sportive

Friday 23/11/2018 10:30 $\div 12$
 Luca P. Ardigò Ph.D.

Second generation accelerometers

Figure 2 Sitting criteria.

Second generation accelerometers

Culhane et al., 2004

Second generation accelerometers

Second generation accelerometers

min. and max. predictive value and sensitivity per class

Figure 6 Minimal and maximal validity of the individual ADL categories based on the monitor's sensitivity ($S_{\min }$ and $S_{\max }$, respectively) and predictive value ($P_{\min }$ and $P_{\max }$, respectively). Sensitivity indicates how often the monitor recognizes a category; the predictive value indicates how often the decision of the monitor is correct. A lack of sensitivity indicates a false negative; a lack of predictive value indicates a false positive.
. uniaxial accelerometer (@front thigh) + 2 unixial accelerometer/digital data-logger (backpack)
-> sitting, standing, lying, crawling, walking, running, going on a swing $73 \div 91 \%$ detection;

Second generation accelerometers

. three uniaxial accelerometers (2@sternum, front thigh) + digital recorder;
-> sitting, standing, lying, walking, climbing/going down stairs, cycling 80% detection (Veltink et al., 1996);
. four biaxial accelerometers (@lateral thighs, sternum or front forearms) + HR monitor + digital recorder;
-> more than twenty different postures/locomotions $83 \div 88 \%$ detection;

Figure 1. An extended configuration of the Activity Monitor, with accelerometers at the thighs, trunk, and lower arms.

Second generation accelerometers

- Introduction of another type of physical sensor:
. (@sternum) two biaxial accelerometers + piezoelectric gyroscope + digital recorder (@wrist);

Fig. 1. Sensor attachment. Vertical and frontal acceleration ($a_{v s}$ and $a_{f s}$) as well as angular velocity $\left(g_{s}\right)$ are measured using a kinematic sensor attached to the subject's chest.

Second generation accelerometers

[^0]Najafi et al., 2003
-> posture change, walking detection;

(c)

Second generation accelerometers

- Accelerometry (-> movement) + physiological measure (e.g., HR measure, thermometry, ventilation measure):
. e.g., HR monitor (-> ME) + motion sensor(s) (-> motion-sensor-sensitive PA);
- accelerometers + inclinometers -> body position over time -> 85\% unstructured exercise thermogenesis estimate:
. total internal heat produced $\approx 75 \div 80 \%$ energy intake;
- partial internal heat produced <- sitting, standing, walking, working, any other unstructured exercise;
. proposal: (during the day) wearing motion sensor, (structured exercise) wearing HR monitor;
. i.e., motion sensor \rightarrow yes/not time to use $H R$ monitor for ME estimate;

Second generation accelerometers

Eston et al., 1998
. exception: children (i.e., V'O2 [ml O2/kg.75 min] correlated w/both counts, HR, but w/counts $r^{2}>$ $w / H R r^{2}$);

Second generation accelerometers (re: children HR)

Fig. 1. Oxygen consumption $\left(\dot{\mathrm{V}}_{2}\right)$ and heart rate (HR) relationship in the room calorimeter for one subject, with separate curves for active vs. inactive data for awake portion of the day (method 3).

[^0]: * PT: Postural transition
 ** SiSt: sit-to-stand transition.
 \dagger StSi: stand-to-sit transition.

