

University of Verona, School of Exercise and Sport Science, Laurea magistrale in Scienze motorie preventive ed adattate

Metodologia delle misure delle attività sportive

Thursday 24/10/2013

Luca P. Ardigò Ph.D.

PA & ME

```
V'02, DLW issues
- ->ME;
- (mass?);
- specific activity efficiency? (PA/[ME-rME])
Luckily eff≈constant
- human species;
- walking main activity
HR issues
- ->ME (=kHR);
- <-external factors (e.g., stress, activity kind);
- latency
```

Observation issues

- simple, immediate;
- operator, video shooting;
- privacy?
- time taking (post-processing)

Self-report diaries, questionnaires issues

- cheap;
- time taking (post-processing)
- correlation w/DLW higher than HR

Common questionnaires

- Physical Activity Scale for the Elderly (PASE);
- Baecke questionnaire;
- Five-City questionnaire;
- Tecumseh questionnaire;
- Minnesota Leisure Time Physical Activity Questionnaire (MLTPA);
- Framingham questionnaire;
- Yale Physical Activity Survey (YPAS)

Ainslie et al., 2003

Pedometry features

- waist;
- ->steps

Pedometer kinds

- electromechanical circuit based;
- electromagnetic circuit based;
- uniaxially accelerometric;
- ankle, shoe 1, 2 uni-, biaxially accelerometric

Pedometry issues

- steps (i.e., most common PA kind m.u.) number;
- Japan standard Max e 3%

How many steps/day are enough?

- 10,000 (Hatano, 1993);
- Tudor-Locke et al., 2004:
- <5,000 sedentary lifestyle;
- 5,000 ÷ 7,499 typical daily activity that does not include exercise or sports and can be defined poorly active;
- 7,500 ÷ 9,999 includes a bit of extra-work (and/or fatiguing work) and can be defined a little active;
- -> 10,000 active lifestyle;
- -> 12,500 very active lifestyle

Accuracy and precision

Good accuracy, poor trueness, poor precision

Low accuracy,
poor trueness,
good precision

Accuracy and precision

Good accuracy, poor trueness, poor precision

Low accuracy,
poor trueness,
good precision

Accuracy and precision

accuracy + precision = reliability

Convergent validity

vs. accelerometer;

vs. observation;

vs. HR, V'O2, DLW;

vs. self-report diary

Construct validity

w/age; w/anthropometry; w/fitness measures

FIGURE 1—Effect of speed on pedometer accuracy (percentage of actual steps) during treadmill walking.

stride #

(estimated) speed

FIGURE 1—Mean difference scores [(comparison – criterion pedometer)/criterion] ± SE as a percentage of the criterion estimated steps over a 24-h period. Positive difference scores represent overestimations, and negative difference scores indicate underestimations of steps compared with the criterion pedometer.

step/day #

400-m step #

Pedometer accuracy/reliability

measures

FIGURE 2—Effect of BMI (25–29.9 kg·m $^{-2}$, 30–35 kg·m $^{-2}$, and >35 kg·m $^{-2}$) on the percent of actual steps recorded by the New-Lifestyles NL-2000 (NL) and Yamax Digiwalker SW-200 (SW). Error bars are standard deviation. * Significantly different from actual steps; * significantly different from the NL (P < 0.05).

(uniaxially accelerometric)

stride #

(electromechanical circuit based)

Pedometer

Final pedometry issues

- no discrimination of weight lifting, gradient legged locomotion, cycling, swimming, rowing;
- shoe or ankle accelerometric pedometer -> stride #

Accelerometer

First generation

Rationale

$$a \leftarrow F (= m \times a) \leftarrow by paying ME$$

Figure 5. Metabolic energy expenditure (EE) is estimated by computing the signal magnitude area (SMA). The acceleration signal is rectified and then integrated. EE is then estimated by means of a linear regression.

Placement waist but also chest, back, wrist, ankle

Accelerometer

- A piezo-electric or -resistive sensor;
- -> 'counts' number, intensity;
- no isometric force

Accelerometer

Mathiee et al., 2004

gravitational acceleration acting along the sensitive axis.

Accelerometer

measures

Figure 4. Acceleration signal produced by a waist-mounted accelerometer aligned in the vertical (gravitational) direction, during a selection of basic daily movements. The acceleration signal is composed of the gravitational acceleration due to the posture of the subject and the acceleration due to body movement. g is the acceleration due to gravity, approximately 9.81 m s⁻². The measured accelerations are dependent on the activity being performed. If the accelerometer was attached at a different point on the body, different acceleration signals would be recorded.

Accelerometer

128 · 1). Raw -128 60 sec 128 2). Full-wave Rectified 60 sec 4000-3). Integrated (15 sec) 60 sec

FIGURE 2—Analytical processing of the acceleration data. 1. Raw: a 60-s window of a digitized raw signal collected at 32 Hz and using a 8-bit A/D conversion. 2. Rectification: all negative signal from (1) was turned into positive. 3. Integration: 15-s epochs.

Accelerometer

Accelerometer

```
- Uniaxial accelerometer -> -59% children DLW ME;
                          -59÷-50% old men DLW ME;
                          +50÷+60% old claudicants DLW ME;
                          -59% young women weekly DLW nME;
- Triaxial accelerometer -> +12÷+49% V'O2 locomotion ME;
                         -21÷-8% V'O2 gradient walking ME;
                         -68÷-53% V'O2 cycling ME;
                         -45÷-35% V'O2 daily activity ME;
                         -35% young women weekly DLW nME
```

HR wrist monitor

HR measure issues

- HR <- environmental temperature and humidity, hydration status, posture, illness, stress, type of exercise (w/upper limbs or lower ones, continuous or intermittent), gender, age, body mass;
- w/≈3' latency

but...

- pedometer/accelerometer -> level legged locomotion;
 no exercise with upper limbs, walking and running on soft ground or on slopes, cycling, swimming, rowing;
- pedometer/uniaxial accelerometer -> no over 9 km/h running

HR measure issues

- (HR \geq 90 bpm or \geq 60% HRMax) ME = k HR;
- -30% daily ME;

(partial) answer:

- FLEX HR method (Spurr et al., 1988): ME = k HR (subject, activity specific) use only @external load/HR > FLEX HR, i.e., average between maximum value during rest or sedentary activity, and minimum value during light activity;
- i.e., (HR < FLEX HR) ME = rME, (HR > FLEX HR) ME = k HR;
- -17÷+20% daily DLW ME

-> beat to beat recording -> HRV

V'02 measure

- direct calorimetry in metabolic chamber;
- indirect calorimetry, respirometry @closed/open circuit -> V'O2, V'CO2, ...;
- < 8h

V'02 measure

V'02 measure

Option 1:

An operator can follow the swimmer by holding the K4b2 using a special rod (rod and harness are included in the standard packaging)

Option 2:

The K4b2 can be hung on a cable to be placed above the swimming pool lane