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ABSTRACT. The authors investigated the effects of movement
time and movement distance on the information entropy and vari-
ability of spatial and temporal error in a discrete aiming move-
ment. In Experiment 1, the authors held movement distance (100
mm) constant and manipulated |1 movement times (300-800 ms)
of 8 participants. In Experiment 2, the authors tested 6 movement
distances at 2 given movement times (15-60 mm at 300 ms;
40-240 mm at 800 ms) in 8 participants. The variability and
entropy for spatial error increased with average movement veloci-
ty, whereas the variability and entropy for temporal error
decreased as a function of average movement velocity. The com-
mon variance between variable error and entropy averaged about
84% and 72% for spatial and temporal errors, respectively, sug-
gesting that the probabilistic approach of entropy reveals features
that are not present in the standard deviation index of variability.
The findings provide further evidence that information entropy
may be a useful single-index representation of variability in the
movement speed—accuracy relation.

Key words: information entropy, movement speed and accuracy,

variability
There have been many efforts to describe and under-
stand the relation between movement speed and accu-
racy. Several relations between movement speed and the
variability of movement outcome have been descriptively
identified, including linear (Schmidt, Zelaznik, Hawkins,
Frank, & Quinn, 1979), logarithmic (Fitts, 1954), square
root (Meyer, Abrams, Kornblum, Wright, & Smith, 1988),
and logistic (Hancock & Newell, 1985) functions. Those
different descriptions of the movement speed—accuracy
relation have been linked to different theoretical perspec-
tives, including information processing (Fitts), impulse
variability (Schmidt et al.), and optimized stochastic control
(Meyer et al.).
Here, we used a probabilistic account of the uncertainty
of movement error, that is, information entropy (Gatlin,
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1972; Shannon, 1948; Shannon & Weaver, 1949) to exam-
ine the traditional distributional account of the variability of
spatial and temporal errors. Investigators have relied on nor-
mal distributional indexes of variability to describe the rela-
tionship between the functions for movement speed and
accuracy. The most common index of movement variability
is variable error (VE), which is calculated as the standard
deviation of the spatial or temporal error. The standard devi-
ation measure is based on the properties of a distribution,
and in a normal distribution it has a special role in captur-
ing the average deviations from the mean. Investigators also
use the coefficient of variation (CV, i.e., standard deviation
divided by mean) to provide a relative measure of variabil-
ity to the spatiotemporal properties of the movement; CV is
useful for contrasting variability over different task condi-
tions. In the Fitts’s (1954) law protocol, the measure of vari-
ation is in essence the range of the distribution as reflected
in the target width.

There are several limitations to the use of distributional
measures of outcome variability (Hancock & Newell, 1985;
Newell & Hancock, 1984). A significant problem is that the
assumption of a normal distribution does not hold in most
conditions of the speed-accuracy relation. There are depar-
tures from the properties of a normal distribution over the
potential speed—accuracy window, and those departures
from a Gaussian function are not a reflection of sampling
problems. Rather, there are systematic changes in skewness
and kurtosis as a function of the spatiotemporal demands of
the task (Hancock & Newell; Kim, Carlton, Liu, & Newell,
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1999). The departures from a normal distribution are signif-
icant because it has been found that changes in the higher
order third and fourth moments that determine skewness
and kurtosis, respectively, can, in and of themselves, change
the estimate of the standard deviation even when the range
of the scores in the distribution remains unchanged (Newell
& Hancock).

Lai, Mayer-Kress, Sosnoff, and Newell (2005) examined
the variability of movement outcome in relation to the direct
measure of the probabilities of the movement outcome.
That approach is built directly on the concept of informa-
tion entropy (Cover & Thomas, 1991; Gatlin, 1972; Shan-
non & Weaver, 1949); that is, probabilities are the founda-
tion of the measure of entropy. Using the measure of
information entropy, Lai et al. showed that the distribution
over a series of trials at points of the movement trajectory
and movement outcome are not normal. Their study provid-
ed preliminary evidence that the entropy estimates of move-
ment outcome as a function of movement speed and accu-
racy conditions show a different property than that
produced by conventional distributional estimates such as
standard deviation and CV. It should be noted that although
Fitts’s (1954) theoretical approach to the movement
speed-accuracy problem was developed from information
theory, he did not calculate information entropy, relying
instead on a range estimate of variability to determine infor-
mation capacity in the now well-known Fitts’s law.

We report here two experiments in which we examined the
relationship between the distributional and information
entropy estimates of the speed—accuracy function over a wide
range of spatial and temporal movement conditions, We were
particularly interested in whether the more precise estimates
of uncertainty based on the probabilities of movement out-
come through information entropy produce the same or a dif-
ferent function of the movement speed-accuracy relation
than do the distributional approaches to variability, variable
error (VE) and CV. Given that the movement error data do not
approximate a normal distribution over most of the move-
ment parameter range, it follows that the inherent skewness
and kurtosis may bias the variance-based approaches of VE
and CV (Hancock & Newell, 1985). A problem with the dis-
tributional approaches to the assessment of movement error
is how to represent the degree of skewness and kurtosis in
estimates of VE and CV.

The information entropy measure has the advantage of
being a single index of variability, and we sought to contrast
it against the functions of dependent variables derived from
the first four moments of the distribution (constant error
[CE], VE, skewness, and kurtosis). We contrasted both indi-
vidual- and group-average speed-accuracy relations to also
determine whether averaging data in that context biases the
estimate of the change in variability in the same way as has
been shown for performance scores in the study of learning
curves (cf. Newell, Liu, & Mayer-Kress, 2001). Our gener-
al expectation was that the resultant pattern of findings over
a wider range of spatial and tempora] task constraints would
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provide an indication of the potential usefulness of an infor-
mation entropy approach to movement variability. One
clear theoretical advantage of an entropy approach is that
the data from different dimensions in different movement
experiments can be contrasted directly because they are in
the same information theoretic terms.

In Experiment 1, we contrasted the two approaches in
discrete aiming tasks that had both spatial and temporal cri-
teria over a range of movement speeds and times for a given
movement amplitude. The first experiment also provided
the opportunity to further test the hypothesis of a relation-
ship between spatial and temporal errors as a function of
movement speed (Hancock & Newell, 1985; Kim et al.,
1999), but in an aiming task in which the limb motion had
to be terminated at a target. In Experiment 2, we manipu-
lated the spatial constraints (movement amplitude) for two
given movement times. We chose one relatively long move-
ment time (800 ms) so that the visual-feedback control
would clearly influence the variability of movement out-
come (Elliott, Carson, Goodman, & Chua, 1991; Wood-
worth, 1899). The other movement time we chose was rela-
tively short (300 ms) so that we could test the distributional
and information entropy estimates of spatiotemporal move-
ment outcomes with minimal influence of online visual
information feedback (Beggs & Howarth, 1970; Keele &
Posner, 1968).

EXPERIMENT 1

Our primary goal in this experiment was to examine
whether an information entropy analysis provides a differ-
ent function for movement speed and accuracy than that
produced by the use of the standard deviation (VE). Our
second goal was to test the hypothesis proposed by Han-
cock and Newell (1985) that relative spatial and temporal
variability (CV) in space and time has a similar logistic
function when a range of movement times is manipulated
over a given movement distance. We also examined the
complementarity between spatial and temporal errors
through both distributional and entropy approaches to the
analysis of movement variability.

Method
Participants

Eight right-handed, healthy adults (6 women and 2 men)
took part in the current experiment. All participants were
students at The Pennsylvania State University ranging in
age from 24-31 years (M = 28.13 years, SD = 2.17 years).
All participants gave informed consent to the experimental
procedures, which were approved for compliance with the
policy of The Pennsylvania State University Institutional
Review Board. Participants were given a small monetary
reward for their participation.

Apparatus

The apparatus used in the current study included the fol-
lowing: (a) a 12- x 18-in. WACOM Intuos (Model GD-
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1218-R) graphics tablet; the sampling frequency was 200
Hz, and the resolutions were SO tablet units per mm in the
x-axis and 48 tablet units per mm in the y-axis; (b) a 13-g,
151- x 12.1-mm Intuos pen (Model GP-300E); (c) a 17-in.
video monitor (335 mm X 248 mm); and (d) an Audioworks
computer speaker system (Model AE-48). We used Matlab
Version 6.0 (Mathworks, Inc., Natick, MA) for data prepa-
ration and SPSS for Windows Version 12.0 (SPSS Inc.,
Chicago, IL) for statistical analysis. We used SigmaPlot
2000 for the examination of function fitting of spatial and
temporal VE and CV. We set the pixels on the monitor at
800 x 600. The ratio of the distance moved on the screen
and the distance moved on the board was 1:1.

Procedure

The participant sat comfortably on a chair, holding the
Intuos pen and facing a computer screen that was at a dis-
tance of approximately 60 cm. The initial start position (2
mm in width) on the left and the end target (1.8 mm in
width) on the right were fixed (both shown as red points on
the white screen). A black, small point (1.8 mm in width)
corresponding to a pen tip was displayed on the screen. To
initiate a trial, we asked the participant to move the pen in a
left-to-right horizontal direction over a target distance in a
target time. We calculated the beginning of movement as
the point at which the pen’s velocity was greater than or
equal to 3 mm/s for more than 30 ms. We defined the end of
movement (space and time) as the initial point at which the
pen’s velocity was less than 3 mm/s for more than 40 ms.

An auditory tone was given once the participant held the
pen within the start position for 1 s. The participant was
instructed not to respond to the auditory tone as fast as pos-
sible (it was not a reaction time experiment) but to begin a
trial comfortably after hearing the tone. We displayed the
trajectory of the pen on the screen during each trial to pro-
vide online kinematic feedback. The movement time was
presented to the participant after the completion of each
trial. Participants were required to perform the discrete aim-
ing movement in different temporal constraint (movement
time) conditions but under the same spatial constraint.

Experimental Design

Movement distance in this experiment was held constant
(100 mm); but the movement time ranged from 300 ms to
2,050 ms in equal increasing 175-ms increments: 300, 475,
650, 825, 1,000, 1,175, 1,350, 1,525, 17,00, 1,875, and
2,050 ms. There were 200 trials performed in each move-
ment time condition in a blocked fashion, and we analyzed
the data from only Trials 11-110 to avoid including a bore-
dom or fatigue effect that was apparent in the latter half seg-
ment of the data collected for each condition. We excluded
the first 10 trials to eliminate trials when the participants
were getting familiar with each experimental condition. We
randomly determined the order of the task demands of the 11
conditions at the given amplitude for each participant. The
target width in every condition was fixed at 1.8 mm. Thus,
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the task-defined index of difficulty (ID; Fitts, 1954) with 100
mm in distance was 6.8 bits. We conducted testing in two
experimental sessions with five or six movement time con-
ditions per day. We analyzed only the data recorded in the
primary direction of motion (x-axis) because that method
creates the largest error and parallels what is reported in the
existing literature (e.g., Fitts, 1954; Schmidt et al., 1979).

Data Analysis

The independent variable was movement time, whereas
the primary dependent variables in the experiment were the
information entropy of movement outcome (hereafter called
outcome entropy), constant error (CE), variable error (VE),
and coefficient of variation (SD/M, i.e., CV) of spatial and
temporal errors. The CV is a dimensionless index of move-
ment variability (Hancock & Newell, 1985); it expresses the
SD as a ratio of the mean value, which allows one to com-
pare the variability of different variables (Croxton & Cow-
den, 1955; Norusis, 2000). For each condition, we calculat-
ed average movement velocity by dividing mean movement
amplitude by mean movement time.

To calculate the outcome entropy of discrete aiming
movements, one needs to know the probabilities of the data
distribution of the movement outcome. In the method for
obtaining the probabilities in the experimental data, we
used properties of the actual frequency distribution, and we
calculated the entropy (Hp) obtained with the following
equation:

H::=ZPilogz(1/Pi). (H

where P; is defined in the frequency distribution, indicating
the relative frequencies of data points in the ith bin (Shan-
non & Weaver, 1949; Williams, 1997). Lai et al. (2005) con-
ducted a preliminary investigation of information entropy in
discrete aiming movements. They showed that the entropy
H, that was calculated with no assumption on the nature of
the data distribution and the entropy Hg that was calculated
on the assumption that the data had a normal distribution
produced different results in the estimate of information
entropy, indicating that the movement outcome data were
not from a normal distribution.

To calculate information entropy on the basis of the fre-
quencies of the data in different bins, one has to relate the
number of bins needed in Hp to the standard deviation (0)
used in Hg. The o controls the spread of a normal distribu-
tion, and a spread of 6 Os can approximately cover the
whole data range of the normal distribution at the move-
ment outcome. It should be noted that the general expres-
sion (Equation 1) for Shannon and Weaver’s (1949) entropy
does not contain the standard deviation & explicitly but only
the bin frequencies P;

For the Hp, furthermore, the dimensionless measured unit
and an appropriate bin size compared with the standard
deviation o used in H; are the two criteria one uses to deter-
mine the number of bins to be used in the Hp formula. One
can derive an adjusted Hp on the basis of Equation 1; the
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adjusted Hp provides an estimate of the absolute entropy
(Lai et al., 2005), as follows:

Hp (0, N, R) = Hp + logy(0) - logs(N, R), )

where N is the number of bins and R is the relative range of
the data distribution at the movement outcome. For our
data, we set N = 20 and R = 6 (6 os in a normal distribu-
tion) so that we could avoid in our samples (100 trials)
extreme cases in which all data points fall into the same bin
or each bin contains only zero or one observation. With that
adjusted Hp equation, one can compare Hp with Hg. The
full details of the entropy algorithms can be found in Lai et
al. (2005).

‘We used a one-way repeated-measures analysis of vari-
ance (ANOVA) to test the effect of movement time on
movement outcome entropy, CE, VE, skewness, kurtosis,
and CV variables. We determined the effect size of all
sources by calculating eta square (n?; Green & Salkind,
2003); an n? value greater than 0.14 is considered to reflect
a large effect size. We set an alpha level of .05 as the criti-
cal level to avoid Type I error in all statistical analyses. To

test current notions on the speed-accuracy relation out-
lined in the introduction, we used Sigma Plot 2000 to fit
the VE, CV, and entropy values as a function of average
velocity with a sigmoidal function (three parameters), y =
a/{1 + e/} 3 Jogarithmic function (three parameters),
¥ = Yo+ a In(x ~ xo); and a linear function, y = y, + ax. We
analyzed the peak trajectory variability, the highest maxi-
mum entropy value of the trajectory of discrete aiming
movements.

Results and Discussion

Spatial Error
Constant Spatial Error

The mean constant spatial error (CE pace) as a function of
average movement velocity is shown in the upper-left panel
in Figure 1.! A significant effect of movement time was
observed on CEy., F(10, 70) = 3.21, p < .01, n? = 0.31.
The mean constant error stayed around zero in the relative-
ly longer movement time conditions and then increased pro-
gressively to overshoot the target with increments in move-
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FIGURE 1. Illustrations of six spatial errors: constant spatial error (CE in mm), variable spa-
tial error (VE in mm), skewness, kurtosis, coefficient of variation in space (CV), and outcome
entropy in space (Entropy).
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ment velocity above 15 cm/s. The analysis of Tukey’s Hon-
estly Significant Difference (HSD) Test revealed that the
CEpace of the 300-ms condition differed significantly from
that of 475-ms condition. Other significant differences of
CEpacc were found between 1,175-ms and 1,875-ms condi-
tions, and between 1,175-ms and 2,050-ms conditions.

Variable Spatial Error

The upper-right panel in Figure 1 illustrates variable spa-
tial error (VEpc) as a function of average movement veloci-
ty. There was a significant effect of movement time on
VE e, F(10, 70) = 81,49, p < .01, n? = 092, VEgue
increased systematically with increases of movement veloci-
ty. Tukey’s HSD test showed that the VEs of the relatively fast
movement time conditions (300, 475, and 650 ms) were each
different from the VESs of other movement time conditions.

The R? values of sigmoidal, logarithmic, and linear func-
tions for VE, CV, and entropy in spatial and temporal
dimensions are shown in Table 1. A one-way ANOVA
showed that the effect of the R? function was significant for
VEgpuces F(2,14) = 11.61, p < .01, n? = 0.62. Post hoc analy-
sis showed that the sigmoidal R? values were larger than the
logarithmic R? values.

information Entropy and Variability

Skewness of Spatial Error

The effects of movement time on skewness of spatial error
(SkewnesSgpace) Were statistically significant, F(10, 70) =
2.78, p < .01, 12 = 0.28. Tukey's HSD test revealed that the
Skewnesspace of the 300-, 475-, and 650-ms conditions dif-
fered significantly from those of the 1,525-, 1,700-, and
2,050-ms conditions.

Kurtosis Spatial Error

There were significant effects of movement time on kur-
tosis of spatial error (Kurtosisspace), F(10, 70) =217, p <
.05, 2 = 0.24. Post hoc analysis revealed that the relatively
fast movement time conditions (300 and 475 ms) differed
significantly from the relatively moderate and slow move-
ment time conditions (1,175, 1,350, 1,525, 1,700, 1,875,
and 2,050 ms).

CV Spatial Error

The CV spatial error (CVpuce) is represented in the bot-
tom-left panel in Figure 1. The pattern of the spatial error
changes over average movement velocity seems to be S-
shaped. Table 1 shows the R? values of sigmoidal, logarith-
mic, and linear functions for CVpce. The sigmoidal func-

TABLE 1. R? of Variable Error (VE) and Coefficient of Variation (CV),
Entropy of Spatial and Temporal Error Over Average Movement Velocity
for Individual Participants, Average (M) of the Individual Data, and Averaged
Error Functions for Experiment 1
VE cv Entropy
Participant sig3 log3 linear sig3 log3 linear sig3 log3 linear
Distance
Pl .98 91 91 .98 91 .92 97 .96 .96
P2 93 91 91 .96 92 93 .76 .76 12
P3 93 91 92 93 .92 .92 93 92 92
P4 .99 .98 .98 .99 .98 .98 97 97 97
PS5 .89 .79 78 .88 .79 a7 95 94 91
P6 93 .88 .88 93 .88 .88 a7 74 74
P7 97 .96 .96 97 .96 .96 .86 .86 .86
P8 .80 .74 5 .83 5 a7 1 .65 .66
M of P1-P8 93 .89 .89 93 .89 .89 .87 .85 .84
M of data 98 95 .96 .98 .96 .96 99 .98 98
Time
Pl .88 91 .84 .96 .96 94 .79 .84 .79
P2 .89 .86 .87 .89 .85 .61 .79 .82 .79
P3 .67 .84 .59 .85 .80 81 .39 75 .38
P4 .83 .84 .79 79 .79 74 .84 .85 .84
PS5 .65 .80 .60 .63 .61 58 .66 1 .65
P6 .88 92 .84 .89 .88 .86 .85 92 .85
P7 74 .82 .70 92 92 91 72 .76 1
P8 .63 72 .58 .92 .89 .89 .54 .66 .54
M of P1-P8 a7 .84 73 .86 .84 .79 .70 .79 .69
M of data 91 97 .85 .99 .98 97 .89 .98 .88
Note. sig 3 = sigmoidal, 3 parameters; log 3 = logarithmic, 3 parameters; and linear = polynominal linear.
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tion fit best for the individual data, the average of the indi-
vidual data, and the averaged data. An ANOVA and Tukey’s
HSD analysis on the R? values indicated that the R? value of
the sigmoidal function, F(2, 14) = 12.57, p < .01, 12 = 0.64,
was significantly higher than the R? values of the logarith-
mic and the linear functions.

We contrasted the three functions fitted with Akaike’s
information criterion corrected for small sample sizes
(AICc; Burnham & Anderson, 2002). We used the AICc to
test how well the functions fit the CVpace data compensating
for the number of parameters in each equation. In that eval-
uation approach, the lower the AICc, the better fit to the
function. The AICc values were —-94.45, —84.08, and —88.88
for the sigmoidal, logarithmic, and linear functions, respec-
tively. The results of that analysis provided support for the
proposition that the CVipace data were S-shaped.

Information Entropy (Spatial Outcome Entropy)

The general increase of spatial outcome entropy
(Entropy,p.ce) as a function of average movement velocity
(cm/s) is illustrated in the bottom-right panel of Figure 1.
The significant effect of movement time was observed on

Entropy,p.ce, F(10, 70) = 32.28, p < .001, n? = 0.82. The
analysis of Tukey’s HSD test revealed that the Entropy,pce
of the 11 movement time conditions differed significantly
between (a) the 300-ms condition and the other conditions,
(b) 475 ms and the other conditions (except for the 650-ms
condition), and (c) the 650 ms condition and the other con-
ditions (except for the 475- and the 825-ms conditions).

The effect of the R? functions for Entropyp.c. was signif-
icant, F(2, 14) = 5.58, p < .01, )2 = 0.44. Post hoc analysis
showed that the sigmoidal R? value was larger than the lin-
ear R? value.

Temporal Error

Constant Temporal Error

Constant temporal error (CEj;,) as a function of average
movement velocity is shown in the upper-left panel of Fig-
ure 2. There was a significant effect of movement time on
CEiime, F(10, 70) = 5.20, p < .01, M2 = 0.43. CE,; was less
than zero to an undershooting state in the longest movement
time conditions, and increased progressively as the move-
ment time decreased (i.e., as the movement velocity
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increased, particularly above 15 cm/s). Tukey’s HSD post
hoc analysis showed that the CE,,, of relatively fast move-
ment time conditions (300 and 475 ms) differed significant-
ly from the CE;p,. of the relatively slow movement time
conditions (1,350, 1,525, 1,700, 1875, and 2,050 ms).

Variable Temporal Error

The upper-right panel of Figure 2 illustrates variable tem-
poral error (VE;n,) as a function of average movement
velocity. There was a significant effect of movement time
on VEm F(10, 70) = 2191, p < .01, n? = 0.76. VEm.
decreased progressively with increments of average move-
ment velocity. The analysis of Tukey’s HSD test again
showed that the VEs of the 300-, 475-, 650-, 875-, and
1,000-ms conditions were individually significantly differ-
ent from the VEs of 1,175-, 1,350-, 1,525-, 1,700-, 1,875-,
and 2,050-ms conditions.

The R? values of sigmoidal, logarithmic, and linear func-
tions for VEn. differed significantly, F(2, 14) = 12.81, p <
.01, n? = 0.65; the main difference occurred between the
linear and sigmoidal functions and between the linear and
logarithmic functions. The sigmoidal R? value had the high-
est percentage of variance of the three functions.

Skewness Temporal Error

There were significant effects of movement time on
skewness of temporal error (Skewness;mc), F(10, 70) =
5.98, p < .01, n? = 0.46. Tukey’s HSD test analysis again
showed that the Skewness;y. of relatively fast movement
time conditions (300, 475, 650, and 825 ms) was signifi-
cantly different from that of the relatively slower move-
ments (1,525, 1,700, 1,875, and 2,050 ms).

Kurtosis Temporal Error

There was no significant effect of movement time on Kur-
tosis temporal error (Kurtosisgm.), F(10, 70) = 1.86, p > .05.

CV Temporal Error

The CV of temporal error (CVime; see Table 2 and
bottom-left panel of Figure 2) over increments of average
movement velocity was again S-shaped. The sigmoidal
function fit best for the individual data, the average of the
individual data, and the averaged data. An ANOVA on the
R? value of the sigmoidalfunction, F(2, 14) = 3.49, p <
.05, n? = 0.33, was significantly higher than were the
ANOVASs on the R? values of logarithmic and linear func-
tions. The analysis of Tukey’s HSD test revealed that the
three function fits differed significantly from each other
and that the sigmoidal function accounted for the largest
percentage of variance. We again contrasted the three
functions by using AICc (Burnham & Anderson, 2002).
As mentioned earlier, the lower the AICc, the better fit the
function. The AICc values were -79.63, —-77.22, and
—73.21 for the sigmoidal, logarithmic, and linear func-
tions, respectively. That finding confirmed that the S-
shaped curve was the robust fit for the CViipe.

November 2006, Vol. 38, No. 6
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Information Entropy (Temporal Entropy)

Temporal outcome entropy (Entropyme) as a function of
average movement velocity (cm/s) is shown in the bottom-
right panel of Figure 2. There was a significant effect of
movement time on Entropy,ime, F(10, 70) = 18.47, p < .01,
n? = 0.73. The analysis of Tukey’s HSD test revealed that
the Entropyyin. of the 11 movement time conditions differed
significantly from each other. The values of Entropyime
decreased as the average movement velocity increased,
however, unlike the values of Entropy.c. That result is
consistent with the proposition that there is complementar-
ity between spatial and temporal outcome entropies and,
furthermore, that there is a space-time variability tradeoff
in discrete aiming movements (Hancock & Newell, 1985;
Newell, 1980). The R? functions for Entropy,,. were sig-
nificant, F(2, 14) = 5.30, p < .05, n? = 0.43. The main dif-
ference occurred between logarithmic and linear functions.
The logarithmic R? values accounted for more of the vari-
ance than did the linear R? values.

Movement Trajectory Variability
(Information Entropy)

The change of the trajectory variability of discrete aim-
ing movements showed an inverted U-shape from begin-
ning to end of movement. In the current analysis, we
focused only on the occurrence of maximum entropy of the
discrete aiming movements. We also conducted a skewness
analysis to examine the data distribution at each time point
of the movement trajectory.

Occurrence of Maximum Entropy

Figure 3 depicts the occurrence of maximum entropy in
terms of percentage of movement time as a function of aver-
age movement velocity (cm/s). We conducted a one-way
ANOVA to evaluate the relationship between movement
time and the occurrence of peak entropy, a relationship that
characterizes the essence of maximal trajectory variability
of discrete aiming movements. The independent variable,
movement time, included 11 different levels ranging from
300 ms to 2,050 ms. The dependent variable was the occur-
rence of maximum entropy as a percentage of the time into
the movement trajectory. The result of the ANOVA was sig-
nificant, F(10, 70) = 2.48, p < .05, showing that movement
time and, hence, movement velocity affected the relative
time of peak entropy in the movement trajectory. Tukey’s
HSD post hoc analysis revealed that the significant differ-
ence occurred between the fastest movement time condition
(300 ms) and all other movement time conditions.

The analysis of Pearson product-moment correlation coef-
ficient over all conditions provided evidence that the correla-
tion between the maximum entropy in the trajectory and the
outcome entropy was significant, (88) =.32, p <.01. The per-
centage of variance accounted for in the relation was very
small (~10%). Moreover, only 1 of the 11 individual condi-
tions produced a significant correlation between those vari-
ables. In addition, the values of maximal trajectory variability
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TABLE 2. R? of Variable Error (VE) and Coefficient of Variation (CV),
Entropy of Spatial and Temporal Error Over Average Movement Velocity
for Individual Participants, Average (M) of the Individual Data, and Averaged
Error Functions for Experiment 2, 300-ms Condition
VE cv Entropy

Participant sig3 log3 linear sig3 log3 linear sig3 log3 linear

Space
P1 91 .88 .89 78 .85 75 .98 97 91
P2 .94 92 .83 89 .93 .84 75 75 75
P3 .88 .89 .88 96 99 93 .94 .94 .70
P4 .88 .86 .87 91 91 .86 93 94 93
P5 .99 97 .90 .96 92 92 .98 .96 .80
P6 93 91 .83 .87 .83 .84 .98 .97 .68
P7 .80 .80 .79 91 .92 .88 .93 92 .60
P8 .81 .79 .79 .84 91 .82 .79 .78 .76
M of P1-P8 .89 .88 .85 .89 91 .86 91 .90 77
M of data .96 .96 .94 .98 .99 97 .99 .98 .88

Time
Pl .18 A7 .18 .62 .61 61 21 .18 21
P2 .06 .60 .07 .20 .38 .20 .18 .67 17
P3 .05 .06 .05 .06 13 .07 A1 11 1
P4 .08 .07 .08 .24 23 24 .36 48 34
P5 .63 48 49 .83 5 .76 .96 .96 92
P6 .06 .54 .05 .06 12 12 .06 .11 12
P7 .05 .05 .06 32 .30 31 .86 49 .50
P8 .63 72 .58 92 .89 .89 .54 .66 .54
M of P1-P8 23 .30 17 41 42 40 .38 42 34
M of data 49 49 .50 .87 .80 .80 .80 .49 .50
Note. sig 3 = sigmoidal, 3 parameters; log 3 = logarithmic, 3 parameters; and linear = polynominal linear.
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FIGURE 3. Occurrence of maximum entropy (%) as a
function of average movement velocity (cm/s). Error bars
represent 95% confidence interval for mean percentage.

(4.84-6.68 bits; figures not shown here) in all movement time
conditions across all the participants were lower than the task-
defined ID (6.80 bits) in the 100-mm condition. For example,
the average peak entropy values for the 11 time conditions
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(from 300 to 2,050 ms) were 6.14, 5.93, 5.67, 5.72, 5.72, 5.60,
5.62, 5.66, 5.79, 5.71, and 5.54 bits, respectively.

Skewness Analysis of Movement Data Distribution

In Figure 4, we present examples of the average skewness
of data distribution as a function of time from two extreme
movement spatiotemporal conditions, the 100-mm/300-ms
condition and the 100-mm/2,050-ms condition. The skew-
ness analysis indicated a strong decreasing skewness
regardless of spatial and temporal constraints. All 11 spa-
tiotemporal conditions showed the trend of zero crossing
with decreasing skewness (signed from positive to negative
values). Figure 4 also shows high skewness for movement
outcome in the very slow 100-mm/2,050-ms condition.

Relation of VE and Entropy

The VE and entropy functions shown in Figure 1 sug-
gested similar properties. To examine the possible distinc-
tion between the distributional (VE) and probabilistic
(entropy) approaches, we applied a Pearson correlation
analysis separately on VE and entropy in both spatial and
temporal aspects for individual participants. The averaged
R’s between spatial VE and entropy and between temporal

Journal of Motor Behavior
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FIGURE 4. Average skewness of data distribution as a
function of time from two extreme movement spatiotempo-
ral conditions (100-mm/300-ms and 100-mm/2,050-ms
conditions).

VE and entropy were .84 (max = .94 and min = .72) and .72
(max = .89 and min = .52), respectively.

Summary

There were three general findings from Experiment 1.
First, the VE and CV data for spatial error were best fit by a
sigmoidal function, and similar, although nonsignificant
trends were present for temporal errors. Second, the func-
tions for VE and entropy over average movement velocity
showed generally similar trends but clearly did not reflect
the same properties, as indexed by their modest correlation.
Third, the difference between the VE and entropy functions
was a consequence of the departure from a normal distribu-
tion and the systematic change in skewness and kurtosis
over the range of movement velocities.

EXPERIMENT 2

In Experiment 2, we contrasted the distributional and
entropy approaches to movement error in conditions with
constant movement time (MT) but with varied movement
distances. We chose a relatively longer MT (800 ms) and a
relatively shorter MT (300 ms) on the basis of their differ-
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ential involvement of visual feedback for limb control (Carl-
ton, 1992). We focused in this experiment on the examina-
tion of the speed-accuracy functions for both spatial and
temporal movement errors with relatively longer and shorter
MT constraints, We again investigated in this experiment the
complementarity of the spatial and temporal errors.

Method

FParticipants

Experiment 2 included the same 6 individuals who had
participated in Experiment 1, plus another 2 participants
(P3 and P6 in Tables 2 and 3) who had experience from an
earlier study (Lai et al., 2005). Thus, there were 8 experi-
enced participants in this experiment. Their age range was
the same as in Experiment 1 (24-31 years; M = 28.84 years,
SD = 2.12 years). They were also given a small monetary
reward for their participation.

Apparatus
The apparatus was the same as that used in Experiment 1.

Experimental Design

There were two MTs in the present experiment. In the
relatively longer MT condition (800 ms), there were six
movement distances: 40, 80, 120, 160, 200, and 240 mm;
the corresponding average movement velocities were 5, 10,
15, 20, 25, and 30 cm/s. In the relatively shorter MT condi-
tion (300 ms), the six movement distances were 15, 24, 33,
42, 51, and 60 mm; their corresponding average movement
velocities were 5, 8, 11, 14, 17, and 20 cm/s. According to
a pilot study, the given 300-ms condition was approximate-
ly the fastest time that participants could perform under the
limitations of the current equipment and task constraints,
especially for the 60-mm condition. We assumed that there
was a more limited role for visual feedback control in the
60-mm/300-ms condition movement but that there was
more involvement of visual feedback control in the 800-ms
condition movements. We asked participants to perform
100 trials in each space-time condition.

Data Analysis

We used the individual one-way 'repeated-measures
ANOVA (in the 300- and the 800-ms conditions) to test the
effect of movement distance on movement CE, VE, skew-
ness, kurtosis, CV, and outcome entropy. We also used a one-
way ANOVA to examine the effect of movement distance on
the relative time of maximum entropy in the movement
trajectory. We fit the VE, CV, and entropy data as a function
of average velocity with the same three functions used in
Experiment 1, that is, sigmoidal, logarithmic, and linear.

Results and Discussion
Spatial Error

Figure 5 illustrates six different spatial errors as a func-
tion of average movement velocity and MT condition: CE,
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TABLE 3. R? of Variable Error (VE) and Coefficient of Variation (CV),
Entropy of Spatial and Temporal Error Over Average Movement Velocity
for Individual Participants, Average (M) of the Individual Data, and Averaged
Error Functions for Experiment 2, 800-ms Condition
VE cv Entropy

Participant sig3  log3 linear sig3 log3 linear sig3 log3 linear

Space
Pl 93 95 95 28 16 17 89 94 .78
P2 .85 .83 .83 .05 21 A5 97 93 .82
P3 74 72 12 .04 33 .04 .89 .88 .89
P4 .96 91 73 91 .69 .70 .97 95 .83
P5 91 .85 .85 .10 .56 .09 .86 .84 .84
P6 .96 .90 .87 .14 .09 .04 .94 93 .87
P7 .94 .85 79 .04 .08 .04 95 91 .85
P8 91 .88 .90 .66 .64 .65 97 .96 .96
M of P1-P8 .90 .86 .83 28 35 24 93 92 .86
M of data .96 .96 .96 73 .62 .63 .99 .98 .96

Time
Pl 21 a7 .20 D3 .68 52 .04 .40 .02
P2 .04 .58 .59 .66 .81 .66 .76 .83 77
P3 .60 92 .59 .66 .86 .65 a7 .80 .78
P4 43 41 41 .68 57 .58 .05 25 25
PS5 .04 .38 .04 13 .68 212 .04 41 .04
P6 .05 .09 .04 .06 .10 .05 .02 .02 .02
P7 .05 24 .05 a2 .02 .03 .03 .02 .03
P8 .63 a2 .58 92 .89 .89 54 .66 54
M of P1-P8 18 45 .26 48 .54 41 32 44 34
M of data .76 .86 75 91 93 91 44 91 44
Note. sig 3 = sigmoidal, 3 parameters: log 3 = logarithmic, 3 parameters; and linear = polynominal linear.

VE, skewness. kurtosis, CV, and information entropy
(Entropy).

CE)’I{M‘(’

The mean constant spatial errors in the 300- and 800-ms
conditions (CEpce 300ms and CE pucenooms) as a function of
average movement velocity are shown in the upper-left panel
in Figure 5. There was a significant effect of movement dis-
tance on CEpyee 300ms: F(5.35)=4.13, p < .01, 2 = 0.37, but
not on CEgucesooms F(5, 35) = 1.37, p > .05. Tukey's HSD
test revealed that the CE of the 42-mm/300-ms condition dif-
fered from all other CEs in the 300-ms condition. Only that
CE exceeded 1.0 mm. We found that the mean CEs for the
300- and 800-ms conditions showed a tendency to overshoot
the target at all movement velocities, indicating that over-
shooting is a general phenomenon when a small target is
used in aiming tasks (Jastrow, 1886; Proteau & Isabelle,
2002).

VE.\/mre

Figure 5 (upper-right panel) shows the variable spatial
error in the 300- and 800-ms conditions ( VE pace300ms and
VE (pucesnoms). The effects of movement distance in both VEs

460

were statistically significant: For VE,,c.300ms F(5, 35) =
38.75, p <.001,n? = 0.85: for VE, e s00mse F(5, 35) = 38.48,
p <.001. n? = 0.85. Generally, VE increased as a function
of movement velocity. Tukey’s HSD test showed that all
VEs differed from each other, except the VEs among 185, 24,
and 33 mm in the 300-ms condition.

Tables 2 (300-ms condition) and 3 (800-ms condition)
show the R* values of sigmoidal, logarithmic, and linear
functions for VE, CV, and entropy in spatial and temporal
dimensions. A one-way repeated-measures ANOVA
showed that the effect of the R* functions was significant for
both VE e s00mss F(2, 14) = 6.13, p < .05, )° = 0.47, and
VE pucesoomss F(2, 14) = 4.77, p < .05, n? = 0.41. For both
MT conditions, the R* values were higher for the sigmoidal
than for the logarithmic function.

Skewness poce

For the 300-ms MT conditions there was a significant
effect of movement distance on skewness of spatial error,
F(5,35) =421, p <.01, n’ = 0.38. There was no effect on
skewness in the 800-ms condition. Tukey’s HSD test
revealed that the spatial skewness of the 15-mm/300-ms
condition differed significantly from the spatial skewness of
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FIGURE 5. Illustrations of six spatial errors: constant spatial error (CE in mm), variable spa-
tial error (VE in mm), skewness, kurtosis, coefficient of variation in space (CV), and outcome
entropy in space (Entropy). Open triangles indicate the 300-ms condition, and open circles
indicate the 800-ms condition.

the 60-mm/300-ms condition, and that the spatial skewness
of the 24-mm/300-ms condition differed from those of the
33-mn/300-ms. 42-mm/300-ms, 51mm/300-ms, and the
60-mm/300-ms conditions.

Kurtosis .

There was no significant effect of MT on kurtosis of spa-
tial error for the 300-ms and the 800-ms MT conditions.

CV e

The spatial coefticients of variation in the 300- and 800-ms
conditions (CV e oome and CV e sooms) are shown in the
bottom-left panel in Figure 5. The effect of movement dis-
tance was significant on CV g aome F(5. 35) = 30.72.p <
001, n° = 0.81, but not on CV pcesom. F(5.35)=2.08.p >
.05. The relative spatial variability decreased with movement
velocity only in the very short duration, 300-ms condition; in
the 800-ms condition, there was little change in relative spa-
tial variability.

November 2006, Vol. 38, No. 6

With regard to the relationship between CVs and veloci-
ty. the effect of the R- functions was significantly different
only in the 300-ms condition (CV e300 F(2. 14) = 9.27,
p < .01.n° = 0.57; the main differences occurred between
the sigmoidal and lincar functions (sigmoidal R* > lincar
R*) and between the logarithmic and linear functions (loga-
rithmic R* > linear R%: Tables 2 and 3 provide the R* values).
There was no function effect on CVpeesmome. F(2, 14) =
1.64, p > .05.

Information Entropy (Spatial Entropy)

Figure 5 (bottom-right panel) displays the change of spa-
tial outcome entropy in the 300- and 800-ms conditions
(Entropy.pucesoome and  ENropy e some) 48 @ function of
average movement velocity (cm/s). The effects of move-
ment distance in both entropies for Entropy ucesomu. F(5.
35) = 28.61. p < .001, 17 = 0.80. and tor EMropy, pace soomms
F(5. 35) = 57.68. p < .001. n* = 0.89. were significant.
Tukey's HSD post hoc analysis revealed that in the 300-ms
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condition significant differences in movement distance
occurred between the 15-, 24-, 31-, and 42-mm conditions.
There were no differences for the Entropy,pace,300ms in the
42-, 51-, and 60-mm conditions. The Entropy pace sooms at all
movement distances were different from each other, and the
size of the difference increased as a function of average
movement velocity.

A one-way repeated-measures ANOVA showed that the
effect of the R? curve-fit functions was significant for both
Entropy,pace 300ms, F(2, 14) =8.78, p < .01, 12 = 0.56, and for
Entropy.puce.s00ms» F(2, 14) = 9.31, p < .01, n2 = 0.57. The
difference occurred between the sigmoidal and linear func-
tions for both spatial conditions. The R? values of the sig-
moidal function were higher than were those of the linear
function (see Tables 2 and 3 for the R? values).

Temporal Error

Figure 6 illustrates the six different representations of
temporal error as a function of average movement velocity
and MT condition: CE, VE, skewness, kurtosis, CV, and

Entropyiime. The open triangles represent the 300-ms condi-
tion; the open circles, the 800-ms condition.

CElinw

The CE;n. in the 300- and the 800-ms conditions
(CEjime 300ms and CEjmegooms) as a function of average move-
ment velocity are shown in the upper-left panel in Figure 6. A
significant effect of movement distance was found for both -
CEs: CEiimesoomss F(5, 35) = 9.64, p < .001, n2 = 0.58;
CEjmes00ms» F(5, 35) =5.47, p < .001, )2 = 0.44. For the 300-
ms condition, increasing velocity led to temporal undershoot-
ing on target time, although for the 800-ms condition, increas-
ing velocity resulted in temporal overshooting on target time.
Post hoc analysis showed that the significant differences of
CElime 300ms Were found individually only between 15- and 60-
mm, 24- and 60-mm, and 33- and 60-mm conditions. For the
CEjime.800ms>» Tukey’s HSD post hoc analysis showed that the
CEs of the relatively fast movement conditions (51 and 60
mm) differed significantly from those of the relatively slow
movement conditions (15, 24, 33, and 42 mm).
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FIGURE 6. Illustrations of six temporal errors: constant temporal error (CE in ms), variable
temporal error (VE in ms), skewness, kurtosis, coefficient of variation in time (CV), and out-
come entropy in time (Entropy). Open triangles indicate the 300-ms condition, and open cir-
cles indicate the 800-ms condition.
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VE

The upper-right panel in Figure 6 illustrates changes of
VEjime in the 300- and 800-ms conditions (VEiime 300ms and
VE ime.s00ms) OVET average movement velocity. The effect of
movement distance was significant on VEjnc100mss F(5,
35) = 2.55, p < .05, 2 = 0.27, but not on VEinc gooms» F(5,
35) = 1.33, p > .05. For the 300-ms condition, a signifi-
cant difference in movement distance occurred between
15- and 60-mm conditions, indicating the extreme veloci-
ty for VE,n was a critical factor for the changes of VE in
the short duration.

We used the same three R? functions (i.e., sigmoidal, log-
arithmic, and linear) to test the relationship between VE and
velocity. The R? values of the three functions for VE, CV,
and entropy in spatial and temporal aspects are shown in
Tables 2 (300-ms condition) and 3 (800-ms condition). The
one-way repeated-measures ANOVA showed that the R?
function was significant only for VEmesooms F(2, 14) =
6.56, p < .05, % = 0.48; the main differences occurred
between the sigmoidal and logarithmic functions. The sig-
moidal R? values were larger than the logarithmic R? values
(see Tables 2 and 3). There was no function effect for
VE ime 300ms» F(2, 14) = 1.12, p > .05.

Skewness;ipe

For the 300-ms MT conditions, there was a significant
effect of movement distance on skewness of temporal
error, F(5, 35) = 7.29, p < .01, n? = 0.51. However, there
was no effect of movement distance on skewness of tem-
poral error at the 800-ms condition. The Tukey’s HSD post
hoc analysis revealed that the Skewness;m. of the 15-
mm/300-ms, 33-mm/300-ms, and 51-mm/300-ms condi-
tions was significantly higher than the temporal skewness
of the 24-mm/300-ms, 42-mm/300-ms, and 60-mm/300-
ms conditions.

Kurtosis;p.

There was no significant effect of movement distance on
Kurtosis,ime for both the 300-ms and 800-ms MT conditions.

Ccv

In Figure 6 (bottom-left panel ), we present the CViiye in
the 300- and 800-ms conditions (CVimeiooms and
CVimesooms). A significant effect of movement distance
was found in both CVs; for CVyme 300ms» F(5, 35)=4.78, p
< .01, n? = 0.41, and for CViimegoomss F(5,35) =371, p <
.01, 1?2 = 0.35. Tukey’s HSD post hoc analysis revealed
that in both CVs, the significant difference in movement
distance occurred between the 15- and 60-mm conditions.
Increasing velocity generally led to the reduction of the
relative temporal variability at different rates. The reduc-
tion of CViime.300ms Was relatively faster than was the reduc-
tion of CViime s0oms. However, there were no significant dif-
ferences for the three R? functions on the CViime 300mss F(2,
14) = 0.48, p > .05, or on the CVjime sooms» F(2, 14) = 1.84,
p > .05.

November 2006, Vol. 38, No. 6
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Information Entropy (EntropYiim.)

The bottom-right panel in Figure 6 shows the Entropyiime
in the 300- and 800-ms conditions (Entropyimeooms and
Entropyiime.sooms) as a function of average movement veloc-
ity (cm/s). There were significant effects of movement dis-
tance on both entropies; for Entropyime oomss F(5, 35) =
5.25, p < .01, n? = 0.43, and for Entropyime.soomss F(5, 35) =
2.86, p < .05, n? = 0.29. Tukey’s HSD post hoc analysis
revealed that in the 300-ms condition, the significant differ-
ence in movement distance occurred between the four
shorter distances (15, 24, 33, and 42 mm) and the two
longer distances (51 and 60 mm). In the 800-ms condition,
the significant difference occurred between the shortest dis-
tance (15 mm) and the five longer distances (24, 33, 42, 51,
and 60 mm). Those findings suggest that although increas-
ing velocity resulted in the reduction of both temporal
entropies, the critical velocity thresholds for the movement
temporal uncertainty were different in the relatively long
(800 ms) and short (300 ms) duration conditions. Relative-
ly fast movements and relatively slow movements caused
more reduction of temporal uncertainty in 300- and 800-ms
conditions, respectively.

The effect of the R? functions was significant only for
ENtropYime.soomss F(2, 14) = 3.66, p < .05, n? = 0.34. The
Tukey’s HSD post hoc analysis revealed that the logarith-
mic R? value was significantly larger than the sigmoidal R?
value. There was no R? function effect for Entropyiime 00ms»
F(2, 14) = 0.60, p > .05.

Occurrence of Maximum Entropy

Figure 7 shows the occurrence of maximum entropy in
terms of percentage of MT as a function of average move-
ment velocity (cm/s) in the 300- and 800-ms conditions.
The ANOVA revealed that the effect of movement distance
on the occurrence of maximum entropy in the 800-ms con-
dition was significant, F(5, 35) = 6.87, p < .001, n? = 0.50,
but the movement-distance variable had no effect on the
occurrence of maximum entropy in the 300-ms condition,
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F(5, 35) = 2.34, p > .05. The Tukey’s HSD post hoc analy-
sis showed that in the 800-ms condition, the relative time of
maximum entropy was not different in the three longer dis-
tances (160, 200, and 240 mm); however, there were signif-
icant differences between the three shorter distances (40,
80, and 120 mm) and each of the three longer distances
(160, 200, and 240 mm). Furthermore, only the maximum
entropy at the 160-, 200-, and 240-mm amplitudes of the
800-ms MT condition exceeded 50% of the duration of the
movement trajectory.

The analysis of Pearson product-moment correlation
coefficient revealed that the correlation between the maxi-
mum entropy in the trajectory and outcome entropy was
significant for both the 300-ms and the 800-ms conditions,
r(48) =.73, p < .01, and r(48) = .81, p < .01, respectively.
The amount of variance accounted for was modest but high-
er than that shown in Experiment 1. None of the individual
movement conditions showed a significant correlation.

The present findings confirmed that the maximum
entropy occurs relatively earlier in slower movements. For
example, the relatively higher velocity in the 800-ms MT
condition led maximum entropy to occur closer to the mid-
dle of the duration of the movement trajectory. That is, the
peak entropy in the long duration (800-ms) MT occurred at
39.46%, 43.44%, 47.43%, 54.14%, 54.38%, and 55.47% of
the movement trajectory in the 40-, 80-, 120-, 160-, 200-,
and 240-mm conditions, respectively. Although the move-
ment velocity for the short duration (300 ms) MT showed no
significant difference in the occurrence of the peak entropy,
the peak entropy systematically occurred at 29.17%,
28.54%, 33.54%, 32.29%, 32.92%, and 32.50% of the tem-
poral duration of the movement trajectory in the 15-, 24-,
33-, 42-, 51-, and 60-mm conditions, respectively.

Relation of VE and Entropy

The data in the 300-ms MT condition showed that the aver-
aged R? for the individual participants between VE,,.. and
Entropy and between VE,;,. and Entropy were .82 (max = .98;
min = .48) and .57 (max = .85, min = .14), respectively. For
the longer 800-ms MT condition, the averaged R%s were .89
(max = .97, min =.70) and .55 (max = .87, min = .19) in its
spatial and temporal aspects, respectively.

GENERAL DISCUSSION

Entropy is related to the concepts of uncertainty, vari-
ability, and probability. The fundamental principle of infor-
mation theory is that the equiprobable and independent ele-
mentary events result in the maximum entropy state (Gatlin,
1972; Shannon & Weaver, 1949). In the field of motor con-
trol, information entropy has been expressed as the proba-
ble capacity to store and process sets of motor commands
from the central nervous system (Fitts, 1954). Information
entropy provides an alternative and direct analysis of the
uncertainty of movement outcome, in contrast to a Gauss-
ian distributional account of the amount of variability of
spatial and temporal errors based on the index of standard
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deviation (Lai et al., 2005). Entropy also provides a com-
mon information dimension on a single index of movement
uncertainty, as opposed to a set of dependent variables that
are derived from the moments of a distribution (e.g., mean,
standard deviation, and skewness). In this study, we exam-
ined (a) the function of entropy in different movement
speed and accuracy conditions and (b) whether that single
entropy measure would reveal a pattern different from that
of variable error in movement speed-accuracy conditions.

Entropy and Movement Outcome Variability

Our central objectives in this study were to contrast the
entropy and distributional approaches to the analysis of the
outcome variability of discrete aiming movements and 1o
determine the spatial and temporal variability and entropy
functions. In the distributional approach, one uses the
dimensionless index of movement variability, that is, the
CV, in addition to the standard deviation so that one can
contrast movement outcome variability across the scales of
error measurement (Hancock & Newell, 1985). The CV is
also an index that combines the mean and standard devia-
tion, and thus, like the entropy measure, it provides a single
index of movement uncertainty.

The CV over movement velocity within a given move-
ment amplitude in Experiment ! produced a sigmoid-like
logistic growth curve for both the spatial and temporal error
functions. That finding is consistent with the data reported
in the foundational study of Woodworth (1899); Wood-
worth’s data reflected an S-shaped function for the CV over
the velocity range within any given amplitude (see reanaly-
sis in Hancock & Newell, 1985). The present findings also
provided additional evidence—here, in an aiming task—
that when the measures of spatial and temporal error are
considered in the same speed-accuracy movement plane,
the movement error functions are isomorphic (Kim et al.,
1999). The theorizing of an S-shaped relative variability
function (Hancock & Newell) contrasts with the theoretical
predictions of the linear (Schmidt et al., 1979), logarithmic
(Fitts, 1954), and square root (Meyer et al., 1988) functions
for the relation between movement speed and accuracy.

To determine whether the entropy probabilistic estimate
of variability produces the same or a different function of
the movement speed—-accuracy relation than do the distribu-
tional approaches to variability, we compared the change in
the respective VE (spatial or temporal) over movement
velocity with the respective change of the entropy measure-
ment. According to the function-fitting comparisons, the
speed—accuracy relationsip to MTs over the same distance
or the change in average velocity (Experiment 1) generally
showed a sigmoid-like function in both VE and entropy
measures. The CV, in particular, is best fit with a sigmoidal
function, and there are different directions to the change in
variability in space and time consistent with the prediction
of Hancock and Newell (1985).

Of central importance, though, to the thrust of this article
is that there was only a modest correlation between each of
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the respective VE and entropy measures, although clearly
the VE function was most closely aligned with the entropy
function when we contrasted it with CE and CV. The dif-
ference between the VE and entropy measures was
enhanced in the longer MT and lower velocity conditions.
That finding suggests that the distributional and frequency
approaches are driven to a significant degree by changes in
different properties of the variability. Furthermore, the dif-
ference between the distributional and entropy approaches
to variability was magnified in the assessments of the con-
trast between the individual data and the group average
data. That contrast provided further evidence that the
assessment of the changes in group data may mask the actu-
al changes that are taking place in individuals.

The analysis of skewness and kurtosis provided evidence
that there is a systematic departure from a normal distribu-
tion in both spatial and temporal outcome errors (Hancock
& Newell, 1985). The outcome data showed trends similar
to those found in the analysis of outcome error in a follow-
through timing task (Kim et al., 1999). Hancock and Newell
hypothesized that the skewness and, to a lesser extent, kur-
tosis are responsible for the difference in the VE and
entropy estimates of the speed-accuracy relation over the
range of movement conditions. That systematic departure
from a normal curve raises interesting issues about the
interpretation of VE and its centrality in determining
speed—accuracy functions.

It is reasonable to assume that when one discusses or
advances predictions about variability (VE) over movement
parameter conditions, the proposal is based on the implicit
assumption that the distribution of the movement errors is
normal. That assumption raises the following question:
What does it formally mean to emphasize or interpret a
function for VE across parameter changes when there is an
accompanying change from a normal distribution in skew-
ness and kurtosis. In contrast, the information entropy
approach provides a direct frequency-based analysis that
enables one to derive a single score for the uncertainty of
the movement outcome. Thus, the formal foundation of
probability in the information entropy measure provides a
firm foundation for considering the uncertainty of move-
ment error or outcome. Contemporary analyses and theoriz-
ing in motor control are so embedded in the background of
the central limit theorem and in the standard deviation as
the predominant measure of variability that the limitations
or problems in the variability VE measure usually either are
not recognized or are passed over (also see Newell &
Slifkin, 1998; Riley & Turvey, 2002).

Meyer et al. (1988) showed that there are different VE
functions for different kinds of speed-accuracy tasks. It is
unknown, however, if and to what degree that assessment
is influenced by the different degrees of departure from a
normal distribution in different tasks. The generality of the
distinction between VE and entropy across the different
types of movement speed—accuracy tasks requires further
investigation. However, those tests must be conducted
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over a wide range of movement amplitude and time
(speed) conditions.

Entropy and Movement Trajectory Variability

We also examined the change of information entropy as
a function of amplitude-MT conditions by determining the
variability of the trajectory of the discrete aiming move-
ments. We hypothesized that the peak entropy may occur
relatively earlier in the long MT (slow movements) condi-
tions because of the stronger involvement of visual feed-
back in the homing-in phase at the end of the movement
(Carlton, 1992; Woodworth, 1899). In that view, the entropy
is related to the velocity profile within the movement tra-
jectory and to the timing of the peak velocity within the
movement.

The results of Experiment 1 showed that longer MTs led
to the occurrence of peak entropy in earlier proportions (in
time) of the movement trajectory. Those findings suggest
that the fixed movement amplitude (10 cm) in Experiment
1 limited the actual values of maximal trajectory variability
in all MT conditions. When we fixed MT and manipulated
movement distance (Experiment 2), we also found that the
maximum entropy occurred relatively earlier in the slower
movements—again, we hypothesize, because of the
enhanced role of feedback processes. Consistent with that
interpretation, the longer MT led peak entropy to occur pro-
portionally earlier in the movement trajectory.

The analyses also confirmed that the task-defined ID in
the Fitts (1954) protocol captures an average entropy, in that
the task-defined ID was larger than the peak entropy during
the movement. The values of maximal trajectory variability
in each MT condition (4.84 to ~6.68 bits/action) were lower
than was the task-defined ID (Fitts, 1954) in the 10-cm con-
dition (6.80 bits/action). Thus, the entropy analysis of the
trajectory provided a more precise index of movement
uncertainty (outcome probability) and afforded a contrast
within and between movement trajectories in a single infor-
mation metric. The analysis of entropy in the trajectory of a
Fitts aiming task with a movement target, as opposed to the
target point used here, would provide a further test of the
effects of task goals on the entropy of the movement and its
outcome.

In summary, the variability of movement as indexed by
the standard deviation is a biased estimate of the uncertain-
ty of movement outcome when the distribution in question
(outcome or trajectory feature, spatial or temporal measure)
is not normal. The results of this study have provided fur-
ther evidence that the error distribution of individual and
group-averaged data in speed—accuracy tasks is typically
not normal and that the departure from normality changes
systematically over the scaling of movement amplitude and
time conditions (Hancock & Newell, 1985; Kim et al.,
1999). One can interpret variability (VE) through the stan-
dard deviation only if one has full knowledge of the distri-
butional properties; when the distribution is not normal, as
is typically the case in movement speed—accuracy studies, it
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is a difficult variable to interpret unless one considers other
variables. In contrast, information entropy is a single-index
representation of the uncertainty of movement outcome
based directly on the probabilities of outcome in the move-
ment speed—accuracy relation, and we have shown here that
it produces a different function for movement speed and for
movement variability.

A determination of whether the single entropy measure is
a more useful description of the speed-accuracy relation
than is the set of measures of the distribution requires fur-
ther study over a broader range of conditions than were
investigated here. Nevertheless, the entropy interpretation
of movement variability in terms of information theory con-
structs seems, as Fitts (1954) noted, to hold the basis for a
general account of uncertainty of movement outcome in
both space and time.

NOTE

1. We plotted the data in this figure with velocity on the abscis-
sa because that is the typical manner in which investigators have
previously presented that kind of data, even though we calculated
the ANOVA statistics with distance and time as the independent
variables.
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