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Introduction

In this chapter we synthesize extant descriptions of the movement speed-ac-
curacy relationship and develop, from these orientations, a space-time approach
to movement accuracy. This new space-time perspective provides a cohesive ac-
count of spatial and temporal movement error functions in the face of changing
kinematics. The space-time function is posited as a statistical manifestation of the
organismic, environmental, and task constraints inherent to the given action.

The relationship between movement speed and accuracy is an issue that has
enjoyed considerable theoretical and empirical activity in the psychological do-
main. Since the seminal experimental work of Fullerton and Cattell (1892), de-
scriptions of the movement speed-accuracy relationship have focused almost ex-
clusively on errors in a single or dual spatial dimension (e.g., Beggs and Howarth
1970; Crossman and Goodeve 1963; Fitts 1954; Woodworth 1899). Moreover,
these formulations have been confined to spatial errors which have been pro-
duced principally at or toward the upper end of the velocity continuum for pre-
scribed movement amplitude and target tolerance conditions. A recent account
of the movement-speed timing-accuracy relationship has examined a wide range
of movement velocities but has also been limited to tasks with criteria in only one
“or two spatial dimensions (Newell 1980; Newell, Hoshizaki, Carlton, and Halbert
1979; Newell, Carlton, Carlton, and Halbert 1980).

The above formulations of the movement speed-accuracy function have ac-
counted for restricted segments of the overall speed-accuracy relationship. We
Ppropose that a_complete description of this relationship should examme both
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errors are measured in the same plane of motion, the movement-speed error
functions for each moment of the error distribution are consonant.

This space-time approach to movement speed-accuracy provides an en-
hanced perspective from which to view previous descriptions of the relationship
between movement parameters and resulting movement accuracy. Traditional
accounts of the speed-accuracy function are shown to be either inaccurate or in-
complete. Furthermore, previous postulates have failed to incorporate movement
timing error, or, where it is a part of the speed-accuracy description (e.g.,
Schmidt, Zelaznik, Hawkins, Frank, and Quinn, 1979), the timing error function
is independent of and incongruent with the spatial error function. The proposed
space-time description provides an alternative perspective from which to assess
the extant explanatory interpretations of the speed-accuracy phenomenon. These
include information transmission (Fitts 1954), discrete error correction (Cross-
man and Goodeve 1963; Keele 1968). and motor-output variability (Schmidt,
Zelaznik, and Frank 1978; Schmidt et al. 1979).

Movement Speed and Spatial Error

The speed-accuracy trade-off is the most reliable relationship in the movement
control literature. Its essence is that spatial error, irrespective of the particular de-
pendent variable, tends to increase with gain in movement velocity. Conse-
quently, the principal tactic available o the performer to ameliorate such error is
the reduction of movement speed so that, as the law implies, a trade-off is made
between movement speed and resultant accuracy.

There have been many attempts to describe and to explain the speed-ac-
curacy relationship. The major approaches are examined here in order to provide
a basis for the proposed space-time description. At this juncture, focus is directed
toward the various descriptive relationships that have been advanced between
the kinematic variables and movement spatial-error, rather than the accompany-
ing explanatory constructs. The individual accounts provide insight into restrict-
ed elements of the speed-accuracy function but none offers a comprehensive pic-
ture.

Woodworth. Woodworth (1899) in his dissertation research is often credited with
being the first to examine the movement speed-accuracy relationship. However,
an earlier treatise by Fullerton and Cattell (1892) on the psychophysics of move-
ment preempts Woodworth’s investigation and, in addition, references earlier ex-
perimental work by both German and French investigators on this problem.
Although acknowledged as the seminal behavioral work in motor control, Wood-
worth’s contribution might be viewed more veridically as a crystallization of the
previous and somewhat sporadic research. Woodworth, working with his mentor
Cattell, examined over 125,000 line drawing movements in an attempt to con-
struct a cohesive account of the accuracy of voluntary movement. Despite the
justifiable acclaim that Woodworth has received for this work, it is apparent that *
the rich description provided in his monograph of the interrelationship between




The Movement Speed-Accuracy Relationship in Space-Time 155

movement time, distance, and velocity in the determination of movement error
has been neglected.

It should be noted that in our projection of the Woodworth data, and all sub-
sequent data sets, we examine the various response_errors in relation to three
movement parameters, namely, amplitude, movement time, and average move-
ment velocity. Utilizing the redundant degree of freedom, average velocity, facili-
tates an intuitive understanding of the error functions and, in this first pass at
synthesizing the speed-accuracy functions, we have kept average movement ve-
locity in our graphical projections. Formal accounts of the speed-accuracy func-
tion should be able to accommodate the error function in terms of amplitude and
time.

In experiments constructed to test the applicability of Weber’s (1834) psy-
chophysical theory to the movement domain, Woodworth independently
manipulated 4 distances (5, 10, 15, and 20 cm) and 10 movement durations
(300—3,000 ms) in a line drawing task. Only three subjects performed this exper-
iment of which only one subject completed all conditions. The standard unit er-
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Fig. 1. Standard unit error as a function of average movement velocity. Within the body of
the illustration movement times {dotted lines) extend from 300 to 3000 ms and movement
amplitudes (solid lines) range from 5 to 20 cm in 5-cm increments. (Data redrawn from
Woodworth 1899, Tables XVI-XVIII)
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ror for each of the three subjects has been collapsed to form a group mean error
for each time-distance combination and these means are depicted in Fig. 1.

As can be seen in the illustration we have had occasion to reference a newly
labeled movement error called standard unit error which will recur throughout
our treatise. This measurement is constructed from the within-subject standard
deviation of response errors, commonly denoted as variable error (VE), together
with the imposed spatial or temporal movement criteria. VE may be derived for
both spatial and temporal aspects of response errors. The standard unit error for
space represents the VE of amplitude divided by the imposed movement dis-
tance at which the error was observed. In essence, this form of error encapsulates
the proportion of variable error made per imposed unit distance. In order that no
misconception be formulated as to the dimension of this error, because it is
dimensionless, we have referred to this as standard unit error. As we sub-
sequently show, when standard unit error is calculated on the same principle for

‘ temporal error, these space-time aspects of movement error are homeomorphic

in that they possess equivalent morphological features. The standard unit error is
distinct from the coefficient of variation, for example, which divides the standard
deviation of error by the attained mean, rather than the imposed mean as in the
case of the present condition. Thus, the standard unit error is independent of
constant error functions, which are subsequently developed in a separate section.

The decrease of standard unit error with increments of average velocity per
given movement time indicates that the gains in variable error are not pro-
portional to the distance moved, which would be consistent with Weber’s theory,
as error increases at a slower rate than changes in extent. However, the variable
error increases at a faster rate than the square root of stimulus magnitude, a
formulation originally postulated and tested by Fullerton and Cattell (1892).
Woodworth’s data also indicate degrees of alternating curvilinearity in the stan-
dard unit error at Jow- and high-velocity conditions within a single amplitude.
Also, increases in movement time within a given distance reduce the standard
unit error but by an amount less than would be proportional to the change in
temporal duration.

Figure 1 clearly displays certain random trends particularly at the shortest
movement times. This is presumably because some data points are based upon
observations derived from a single subject. However, in contrast to the interpre-
tation advanced by Keele (1968, p.391), we choose to interpret the non-
proportional and curvilinear trends exhibited in Woodworth’s data as the basis
for a veridical description of the speed-accuracy function.

Woodworth also reported systematic constant error shifts with changes in kin-
ematics. The general trend within a given movement amplitude was for over-
shooting and undershooting to occur at low- and high-velocity conditions, re-
spectively.

Woodworth’s observations imply an intricate relationship between movement
duration, amplitude, and velocity in the determination of movement error. How-
ever, this perspective has failed to emerge from subsequent reference to this
work. This is surprising because Woodworth’s dissertation still provides one of
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Fig. 2. Movement time (ms) as a
function of index of difficulty (ID) in
tapping (Fitts 1954) and discrete
(Fitts and Peterson 1964) movement
tasks. (Adapted from Fitts and
Peterson 1964)
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the most comprehensive investigations pertaining to the speed-accuracy relation-
ship and, as we subsequently demonstrate, the data are consistent with more re-
cent empirical observations (e.g., Schmidt et al. 1979).

Firts. While Garrett (1922), Philip (1936), and Craik and Vince (1963 a, b)* pur-
sued descriptions of the speed-accuracy functions, it was Fitts (1954) who pro-
posed a formal relationship:

MT=a+blog, 2A/W). %))

where MT is movement time, A represents the amplitude of movement, W is the
target width, and a and b are empirically determined constants. Data reflecting
the accuracy of this mathematical relationship are shown in Fig. 2, which is taken
from the discrete movement analysis of Fitts and Peterson (1964) and includes
movement time data from the original tapping task protocol employed by Fitts
(1954).

In Fitts’ formulation, an index of movement difficulty (D) is manipulated by
the ratio of target width to amplitude of movement and is calculated by:

ID=log, 2A/W). 2)

Since Fitts” original proposal, several elaborations to Equation 1 have been ad-
vanced. Welford (1968) suggested that subjects utilize only the near half of the
target area and modified the equation accordingly to accommodate a greater
percentage of performance variance in the form:

MT=Klog, (4/ W+0.5). A3)

! The original dates of these manuscripts were August, 1943 and March, 1944, respectively,
published as APU reports, Cambridge University, England.




158 P. A Hancock and K. M. Newell

Subsequently, Welford, Norris, and Shock (1969) advanced an equation relating
movement time separately to amplitude and target tolerance:

MT=a+blog, A+blog, (1/W). )]

Other investigators have followed Fullerton and Cattell (1892) and used the
actual spatial error from a point or line target. These measures of error? of a dis-
tribution of trial responses have been labeled mean error square (E?) and the ef-
fective target width (W), respectively (Beggs and Howarth 1970; Welford 1968).
These procedures have allowed a more precise description of the distribution of
the outcome of responses compared with a score of percentage of movements
missed for any particular target width. However, these approaches do not pre-
clude an error derived from the method of measurement employed. For
example, Schmidt et al. (1978) estimated that with their procedure the measure-
ment error of W, in the stylus-aiming task was equal to 0.6 mm. The contribution
of measurement error to the overall estimation of movement accuracy may be
small, although it is still an important factor to consider in the full description of
the speed-accuracy relationship.

The suggested modifications to Fitts’ equation have added a marginal degree
of precision to the quantification of the speed-accuracy formulation but they
have not changed the essence of the relationship inherent in the original equa-
tion. Moreover, the relationship proposed by Fitts has been demonstrated as
robust over a wide range of populations (e.g., Wade, Newell, and Wallace 1978;
Wallace, Newell, and Wade 1978), with different anatomical units (e.g., Langolf,
Chaffin, and Foulke 1976), in an underwater environment (e.g., Kerr 1973), and
under microscopic conditions (e.g., Hancock, Langolf, and Clark 1973). It is only
fitting, therefore, that Equation 1 is generally known as Fitts’ law.

There are several factors indicating limitations to the potential of Fitts’ law as
a general description of the movement speed-accuracy relationship. With respect
to its internal consistency, it has been observed that the lawful relationship fails
at very low IDs (e.g., Crossman and Goodeve 1963; Klapp 1975), a feature il-
lustrated in the original Fitts data (see the deviation from the regression line of
the movement time for the tapping task at ID of 1 in Fig. 2). Secondly, in con-
trast to the implicit assumption of Fitts’ law, it has been suggested that amplitude
and target width do not possess equal weighting in the determination of move-
ment time (Sheridan 1979). This criticism centers on the observation that in sev-
eral aiming studies the movement times for amplitude-target combinations,
within a particular ID, tend to be aligned in an inverse order with respect to tar-
get size so that smaller targets possess longer movement times. Unfortunately, it
is uncertain whether this trend reflects departures from Fitts’ law or experimental

* The confusion surrounding the use of the term “effective target width” has been com-
pounded by different interpretations for this common label. Welford (1968), following
Crossman (1957), took W to represent an error range represented by four standard devi-
ations. thmidt etal. (1979) utilized We as the within-subject standard deviation of re-
SpOMnSE EIToTs.
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artifacts. For example, it is possible that this effect could be the result of a speed-
accuracy trade-off within amplitude-target width conditions. However, this argu-
ment cannot be utilized with Fitts’ (1954) original data as the smaller targets also
possess the larger error rates.

A further possible confounding element is that larger targets increase the like-
lihood of a higher number of contacts occurring in the near half of the target. The
outcome of such a constant error shift would be that the average distance tra-
veled would decrease as target size increases at a given distance so that move-
ment time also decreases proportionally for a given error rate. Consequently,
there appear to be limitations in the Fitts formulation of the speed-accuracy
function although problems with the aiming task protocol also compromise its
internal validity.

In addition to the foregoing problems, the term speed when used in relation
to Fitts’ law has, in effect, assumed the burden of representing both a velocity
and a time dimension as, in the Fitts discrete and reciprocal aiming tasks, the
average movement velocity and movement time covary. The independent effects
of movement amplitude, velocity, and duration on spatial accuracy were not pre-
sented by Fitts, or indeed in subsequent work concerning the Fitts protocol,
although such relationships may be derived from Equation 1. Fig. 3 depicts the
data originally presented in Fitts (1954, Experiment 1) but redrawn such that the
relationships between movement time, amplitude, average velocity, and error
(target tolerance) are explicit.

One striking relationship revealed in Fig. 3 is that error, as assessed by target
tolerance, decreases in a curvilinear manner as average movement velocity de-
creases at any movement amplitude. If lines for prescribed movement times were
drawn through the appropriate points of target tolerance, although this is not
possible with Fitts’ data set as there are no identical movement times despite the
original prediction, then they would increase at a negatively accelerating rate
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Fig. 3. Target tolerance (in.) as a function of average movement velocity (in./s), movement
amplitude (in.) (continuous lines), and index of difficulty (dashed lines). (Redrawn from
Fitts 1954, Table 1)
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with gains in average movement velocity in a fashion consistent with the Wood-
worth data previously reviewed. The ID-error (target tolerance) lines appear
linear with a common intercept on the ordinate above the intersection of the
axes. Our interpretation is that Fig. 3 is more revealing as an exposition of the
basic relationships that exist between the kinematic parameters and movement
error than was originally presented (see Fig. 2).

In addition to the above specific limitations, it is the case that all verifications
of Fitts’ law have occurred in aiming tasks with only one or two spatial criteria.
There have been no attempts to determine whether Fitts’ equation applies to a
task with three measured spatial criteria. A more important restriction of the
Fitts protocol is that movement time is a dependent rather than an independent
variable and this excludes the concomitant consideration of temporal error to
movement accuracy. This is a serious limitation particularly in considering tasks
which have time as a criterion, as for example when a limb, or an extension of a
limb, is required to make contact with a moving object.

Fitts’ law also describes the movement speed-accuracy relationship princi-

- pally at the upper end of the movement velocity continuum for any particular
anatomical unit over any given movement amplitude-target tolerance condition.
It is only in limited circumstances that tasks demand limb movement at or ap-
proaching that of maximum velocity for any particular movement amplitude.
Even within this limited range of movement velocities, it has been suggested that
the points utilized in the construction of the Fitts relationship may be more ap-
propriately fitted to curves other than logarithmic transform (Jagacinski, Rep-
perger, Ward, and Moran 1980; Kantowitz and Knight 1978). Indeed, Kvalseth
(1980) has shown that a power function produces a marginally superior fit to
data derived from Fitts’ protocol. although only at the expense of adding an ad-
ditional degree of freedom to the equation. Parenthetically, the base of the log
component of Fitts’ equation is immaterial to the description (Bainbridge and
Sanders 1972). The binary base was chosen presumably to maintain a degree of
concordance with the information theoretic approach of the original conceptions
of Shannon and Weaver (1949), although the mathematical assumptions upon
which such a connection to Fitts’ formulation is founded have been suggested as
flawed (Kvalseth 1979).

Given these reservations concerning Fitts’ law, it seems necessary to consider
the nature of the speed-accuracy relationship over a wider range of kinematic
conditions and unbound by the particular constraints of the stylus-aiming pro-
tocol. While Fitts’ law provides a good approximation of the movement-speed
spatial accuracy phenomenon, over a reasonably wide range of the movement
velocity continuum, Equation 1 clearly cannot represent the comprehensive de-
scription of it. Moreover, it masks certain systematic relationships that exist be-
tween accuracy and the kinematic parameters of movement.

Finally, it should be recognized that it is important to distinguish between
Fitts’ equation as a description or curve-fitting operation of the relationship be-
tween movement time and target tolerance and as an information transmission
explanation which attempts to account for the speed-accuracy function. Regard-
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less of the veracity of Fitts’ law as a description it does not necessarily demand a
tacit or explicit acceptance of the information transmission explanation by
characterizing the relationship of /D to movement time in terms of channel ca-
pacity. There are grounds upon which to question the analogy drawn by Fitts be-
tween the information capacity of a band-limited communication channel and
the human motor system. For example, Kvalseth (1979) has argued that in the
classical model the input signals are stochastic whereas Fitts (1954) implied that
the input to the motor system is deterministic. This latter assumption leads to
fixed and consequently erroneous estimates of the information capacity of the
human motor system. However, even with an appropriate use of communication
theory, the derived channel capacity is merely an alternate form of description of
the outcome variability for given kinematic conditions, in that it is obtained by
rearranging the terms in Fitts’ equation.

Bailey and Presgrave. 1n the course of developing principles and procedures rela-
tive to time and motion studies in the work place, Bailey and Presgrave (1958)
conducted several analyses of the relationship between the speed and accuracy of
simple limb movements. This work is not recognized generally in accounts of the
movement speed-accuracy relationship, which is unfortunate as the data on the
accuracy of simple arm movements represent one of the most comprehensive ex-
aminations conducted.

Movement Amplitudes in Inches (x2.54 for cm)
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Fig. 4. Target tolerance (mm) as a function of average movement velocity (cm/s) and
movement amplitude (in.). (Adapted from Bailey and Presgrave 1958; Figures 10, 13. The
original scale for movement amplitudes is preserved for ease of illustration)
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Figure 4 is adapted from data originally presented in Bailey and Presgrave
(1958, Figures 10, 13) and describes the average velocities of arm movements to a
target in terms of the 20 amplitudes and 5 target tolerances manipulated. Details
of the experimental procedures are somewhat sparse but apparently there were
no error rates as subjects were always required to contact the target regardless of
temporal constraint. The data are consistent, however, in demonstrating the
curvilinear relationship of movement velocity and target tolerance within a pre-
scribed movement amplitude. In this respect the data of Bailey and Presgrave
(1958) provide substantial support for the reinterpretation of the observations of
Fitts (1954), which we have discussed above. Figure 4 also reveals that constant
increments of amplitude at any given target tolerance lead to a negatively de-
celerating increase in the average movement velocity produced. Consistent ef-
fects are also noted for slope of the amplitude lines, which decrease systemati-
cally with equal increments of movement amplitude.

In each case the data points presented are based on CV movements, those
which Bailey and Presgrave note as requiring precision in movement (C) with the
use of vision (V). From the current perspective one limiting factor of this work is
the lack of specification of a defined temporal criterion. As a consequence, the
picture presented in Fig. 4 may not be as veridical a representation as could be
desired concerning the movement time contribution to overall accuracy.

Beggs and Howarth. On the basis of a series of hand-aiming experiments (Beggs
and Howarth 1970, 1972a,b), Howarth, Beggs, and Bowden (1971) determined
that the mean square error (E?) of the deviations from a target line was predicted
by the equation:

E*=Ef (0pdy)’. 4)

where E, and og are empirically determined constants. Howarth et al. (1971)
speculated that E* was made up of the sum of two independent sources of error.
E} was taken to represent some kind of uncontrollable tremor while (0 d,)* is a
variance due to the angle (og) and length (d,,) respectively of what Howarth and
colleagues referred to as the uncontrollable movement, which represents that
portion of the movement produced by the last discrete error correction. It was
determined that the aiming data revealed a linear relationship between mean
square error (E?) and the distance traveled during this last discrete correction.
Howarth et al. (1971) indicated that the speed-accuracy data generated from
their experiments were incompatible with Fitts’ formulation. However, there are
several differences between the respective experimental protocols employed. The
task utilized by Howarth et al. (1971) was distinct in that the aiming movement
occurred in the sagittal plane, the duration of each tapping movement was rela-
tively long (416-1428 ms) compared with that in Fitts’ (1954) original work
(180-731 ms), and the measures of spatial accuracy were orthogonal to the prin-
cipal plane of motion. Kerr and Langolf (1977) have demonstrated that Fitts’ law
operates for movements in the sagittal plane and therefore the difference be-
tween the formulation of Fitts and that of Beggs and Howarth is unlikely to be
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due simply to the influence of the selected plane of motion. Another possible
source of incongruence is the difference in the duration of each individual move-
ment. In the studies conducted by Beggs and Howarth, the movement times were
considerably greater than those in Fitts’ experiments and presumably allowed for
a higher probability of discrete corrections over a group of trials.

Howarth et al. (1971), based upon earlier work (Beggs and Howarth 1970),
fixed the temporal estimate of the last error correction from target impact at
290 ms. Consequently, the distance traveled during the last error correction
covaried with the average velocity of the discrete correction. A reanalysis of the
root mean square error (E) data reported by Howarth et al. (1971) reveals that E
also increases as the average velocity of last discrete correction increases (see
Fig. 5). Furthermore, when E is divided by the distance traveled during the pro-
posed last error correction, the error decreases with increases in the average vel-
ocity of the corrective response (see Fig. 5). This implies that increases in E are
not proportional to gains in both distance and velocity of the last discrete cor-
rection.

Discrete correction interpretations of Fitts’ law (Crossman and Goodeve
1963; Keele 1968) operationally define a correction as an inflexion point on a
trace of a kinematic parameter (e.g., Carlton 1979a. 1980; Langolf et al. 1976).
Howarth and his associates did not measure the discrete movement corrections
directly and in consequence their interpretation of the speed-accuracy relation-
ship relies on the implication that a discrete correction occurred as the movement
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Fig. 5. a E, Root mean error square (mmm) as a function of average movement velocity and
average velocity of the final discrete correction. b E, divided by movement amplitude (%)
as a function of the average velocity of the final discrete correction. (Adapted from
Howarth, Beggs and Bowden 1971, Table 2)
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times exceeded that of a visually based movement correction time. The temporal
duration of a movement is insufficient a criterion from which to establish the
presence or absence of a discrete correction.

Current estimates of the minimum visual processing time in discrete move-
ments are considerably lower than the traditionally accepted 190-260 ms (Keele
and Posner 1968) and 290 ms proposed by Beggs and Howarth (1970). Carlton
(1981) utilizing high-speed film techniques has shown visually based discrete cor-
rections with a latency of 135 ms, and Smith and Bowen (1980) have provided
evidence that visually based response corrections can occur in less than 90 ms.
Hence, even if discrete corrections occurred, the 290-ms estimate of minimal
visual processing time by Beggs and Howarth is conservative. Indeed, Carlton
(1979b) has argued that perusal of the Beggs and Howarth (1970) data suggests
that contrary to their own assessment the mean corrective reaction times were
165 ms when vision was withdrawn with the hand close to the target. The dis-
crepant estimates apparently are due to the point in the movement trajectory
where vision was withdrawn. When vision is withdrawn with the hand close to
the target, Carlton proposes that the estimate of visual processing time is shorter
than 290 ms and this estimate increases when the hand is farther from the target.

The summary kinematic data presented by Howarth et al. (1971, Figure 1)
suggest that a continuous movement occurred on average although it is possible
that these group data mask individual trial corrections which may have occurred.
The failure to provide direct evidence of discrete corrections on individual trials
undermines the interpretation offered by Beggs and Howarth for their speed-ac-
curacy function. In addition, it raises the issue of whether the temporal duration
of the response is the key factor which affords different functions for the speed-
accuracy data sets presented by Fitts (1954), Beggs and Howarth (1970), and in-
deed, as will be subsequently discussed, Schmidt et al. (1979). Reanalysis of the
data provided by Howarth etal. (1971) and Beggs, Graham, Monk, Shaw, and
Howarth (1972) in terms of E divided by the amplitude of movement suggests
that E increases nonproportionally regardless of whether it is related to the aver-
age velocity of the last discrete correction or the average velocity of each move-
ment (see Fig. 5).

In summary, the formulation of Beggs and Howarth cannot represent a gen-
eral account of the movement-speed accuracy relationship as it is limited to
measurements of spatial error and constrained to movements that are assumed to
contain a discrete correction. It is our contention that the actual data of Fitts and
those of Beggs and Howarth are qualitatively similar and differ only quantita-
tively due to the differing task demands alluded to previously. In addition, ap-
parent differences may be generated by the use of a logarithmic axis as is given
in Howarth et al. (1971). The absolute size of the movement errors will inevitably
be smaller when they are measured on the basis of aiming movements to a target
line and in a plane orthogonal to the principal direction of motion, which prob-
ably renders the employment of Crossman’s (1957) estimate of effective target
width by Howarth et al. (1971) inappropriate for contrasting the data sets.
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Fig. 6. Effective target width (We) or standard deviation of spatial error as a function of
average movement velocity. (From “Motor output variability: A theory for the accuracy of
rapid motor acts” by Schmidt, Zelaznik, Hawkins, Frank and Quinn, Psychological Re-
view, 1979, 86, 415-451, Figure 7. Copyright 1979 by the American Psychological As-
sociation. Adapted by permission of the publisher and author)

Schmidt, Zelaznik, Frank, Hawkins, and Quinn. In support of a motor-output
varnability theory of the movement speed-accuracy trade-off, Schmidt et al.
(1978, 1979) have presented spatial-accuracy data for aiming movements, over a
range of average movement velocities (15-300 cm/s) and movement times
(140-500 ms). Figure 6, which is derived from Schmidt et al. (1979, Figure 7),
provides their picture of movement spatial error in a two-dimensional aiming
task. Schmidt et al. recognized two trends in the data depicted in Fig. 6: firstly, a
linear relationship between average movement velocity and spatial error in the
form of W,, a finding which is consistent with Weber’s law and, secondly, the
tendency for both slope and intercept of the regression line on W, to increase as
movement time decreases. This suggests that movement time and average move-
ment velocity interact in determining spatial error (W,) measured in the princi-
pal direction of motion. Increases in movement velocity have been shown also to
increase error in the plane orthogonal to the principal direction of motion (Beg-
bie 1959; Beggs and Howarth 1970; Drury 1971), although the absolute size of
error is reduced in this plane (Siddall, Holding, and Draper 1957; and compare
Schmidt et al. 1979: Figures 8. 10).

A linear relationship between actual variable spatial error and movement ve-
locity was reported by Schmidt et al. (1979) in the form:

W, o« (A/MT) (6)

where 4 is movement amplitude and M7 is movement time. However, there are
reasons to doubt the validity of this description. If the relationship was linear, it
would be in direct conflict with each of the preceding descriptions of the move-
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ment-speed spatial-accuracy phenomenon, including Fitts’ formulation, which
only appears linear by virtue of the logarithmic term in Equation 1. In addition,
a proportional function is incongruent with the curvilinear relationship estab-
lished between movement velocity and timing error (Newell et al. 1979, 1980).
Consequently, there are grounds upon which to postulate that the spatial error
movement-velocity relationship is not a simple linear function. A linear function

'between response variability and movement velocity for prescribed amplitudes

was rejected by Fullerton and Cattell (1892) and Woodworth (1899) in their orig-
inal investigations of Weber’s law concerning movement precision.

Indeed we propose that a more veridical picture emerges from a reanalysis of
the data of Schmidt et al. (1979) presented in Fig. 6. Although Schmidt and his
colleagues interpreted the speed-accuracy function from their data as linear it is
our contention that a curvilinear function is more appropriate. One problem en-
countered is that linear trends may often be fitted to a small number of data
points and interpretation may be also biased by the relative scales chosen for use
on ordinates and abscissae. Figure 7 reflects a reexamination of the actual values
presented in Schmidt et al. (1979) and reveals the curvilinearity of the move-
ment-speed, spatial-accuracy function.

Figure 7 shows some interesting trends relative to the movement speed-ac-
curacy relationship. Firstly, the standard unit error actually decreases cur-

- vilinearly as movement velocity increases with a given movement time. This find-

ing is consistent with the functions generated from Woodworth’s data which were
presented in Fig. 1. Secondly, decreasing movement time at any given average
velocity generates a negatively accelerating increase in the standard unit error.
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Fig. 7. Standard unit error as a function of average movement velocity and movement
time. (From “Motor output variability: A theory for the accuracy of rapid motor acts” by
Schmidt, Zelaznik, Hawkins, Frank, and Quinn, Psychological Review, 1979, 86, 415451,
Figures 7, 9. Copyright 1979 by the American Psychological Association. Adapted by per-
mission of the publisher and author)
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This holds for movement times ranging from 140 to 500 ms in the data of
Schmidt et al. and from 300 to 3,000 ms in the investigation of Woodworth.
Thirdly, the rate of gain of error with decreases in movement time reduces at a
negatively accelerating rate as distance increases. Thus, the trends exhibited in
Fig. 7 show a remarkable degree of similarity to those depicted in Fig. 1 from
Woodworth, despite the different task and time-distance constraints imposed.

We recognize the potential flaw in equating differing data sets on the graphi-
cal reinterpretation expressed in standard unit error terms. Indeed, various func-
tions including both constant and straight-line relationships provide similar
graphical morphologies when expressed in this manner. However, this only arises
when the functions contain intercepts other than at the origin. We believe that
when the subject engages in no movement, no error is made. Or in variable error
terms the function tends toward zero as movement velocity decreases. As we
have indicated earlier, this important tendency may be masked by measurement
error. However, the passage of the variable error function through the origin
makes the resulting expressions in standard unit error a veridical reflection of
nonproportionality, rather than an artifact of dividing a straight-line function
with an intercept by a constant.

The data presented by Schmidt and his colleagues provide interesting insights
into the relationship between movement speed and accuracy, particularly with
respect to isolating the impact of the various movement parameters upon the
speed-accuracy phenomenon. However, Schmidt et al. (1979) failed to exploit
fully the relationships indicated in their extensive data. Meyer, Smith, and
Wright (1982) have utilized the empirical data provided by Schmidt and his col-
leagues and have claimed to provide a superior mathematical derivation of the
Iinear trend noted. However, this model continues to adhere to a proportional in-
terpretation of the relationship between the variability of error and movement
velocity, a position which has been demonstrated to be essentially untenable.

Summary. It should be apparent from the preceding analysis that a com-
prehensive description of the movement speed-accuracy relationship has still to
be realized. The existing accounts are either fundamentally incorrect or at best
incomplete. Fitts” law has proved to be robust over numerous experimental con-
ditions but does not account for the complete range of movement amplitude,
time, and velocity manipulations and, indeed, has other limitations with regard
to its potential as a general account of movement accuracy in three spatial
dimensions with time as an added consideration. Furthermore, the speed-ac-
curacy link between movements which are presumed to have (Howarth etal.
1971) and not have (Schmidt et al. 1979) a discrete correction prior to target im-
pact is far from clear.

We now lay out a movement speed spatial-accuracy description which is based
on the reinterpretations of the data sets previously presented together with
other speed-accuracy analyses (e.g., Philip 1936). This description provides a
basis for an understanding of the relative contribution of the various movement
parameters to movement accuracy. Furthermore, this formulation is consonant
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with the movement-speed timing-error function, which is an essential precondi-
tion to the development of a space-time formulation of the speed-accuracy rela-
tionship.

The Movement-Velocity Spatial-Error Function

Initially it is necessary to consider the appropriate error measure(s) for depicting
the movement speed-accuracy function. Most empirical examinations of this
function have followed Fitts (1954) in utilizing a designated target width for aim-
ing tasks. This is presumably, in part, for the purposes of ease of measurement
and to preserve the theoretical link to Fitts’ law. Although it has been suggested
that estimates of W, may be generated from this approach (e.g., Welford 1968),
this proposal is dependent upon the assumption of normality of the response dis-
tribution across the target. An analysis of actual distributions belies this inference
(Fullerton and Cattell 1892). It is appropriate, therefore, to measure the actual
outcome obtained as precisely as possible in order that an accuracy represen-
tation may be generated of the total distribution of response outcomes at any
given movement time-amplitude condition. This approach is consistent with the
strategy initiated originally by Fullerton and Cattell (1892) and Woodworth
(1899) to examine the speed—accuracy relationship.

The estimation of the distribution of response outcome errors for the speed-
accuracy function is usually based upon two descriptive statistics, namely the
mean and the standard deviation. In early investigations both statistics were re-
ported separately (e.g., Fullerton and Cattell 1892; Woodworth 1899). In most
subsequent investigations the performance mean or constant error either has not
been provided (e.g., Schmidt et al. 1979) or it has been combined with variable
error to form a root mean square measure (¢.g., Howarth et al., 1971). One prob-
lem with omitting an independent assessment of mean performance from the
speed—accuracy relationship is that the variability function is developed on the
basis of the imposed amplitude-time constraints without consideration of the ac-
tual average velocity which is produced. The significance of imposed versus at-
tained performance is particularly important at low and high average velocity
conditions within any criterion amplitude, as constant spatial error shifts occur in
the form of overshooting and undershooting, respectively (e.g., Fullerton and
Cattell 1892; Woodworth 1899). Even if both the constant error and standard
deviation functions are plotted there are additional features of the response error
distribution which have not been considered in previous descriptions of the
speed-accuracy function.

Accounts of the speed-accuracy function implicitly assume a normal distni-
bution of response outcomes (e.g., Welford 1968). Consequently, descriptions of
response outcome have been formulated upon only the first and second moments
of a distribution. Skewness and kurtosis have not been considered, despite the
fact that they may bias the estimates of the standard deviation if they are
manipulated independently over a set of related distributions (Newell and Han-
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cock 1984). Thus accounts of the speed-accuracy function have failed to consider

the complete statistical properties of the response outcome distribution. This may ",
be due in part to the misleading labels such as effective target width W, (Schmidt |

et al. 1979), which are utilized for what in essence is simply the standard devi-
ation of the response error.

The above statistical considerations have been raised as elaboration of the ex-
isting speed-accuracy accounts into a unified comprehensive function clearly de-
pends upon an established and common set of descriptive statistical procedures.
Furthermore, our interpretation is that discrepancies which occur between extant
accounts are, in part, based upon statistical properties of distributions observed.
Consequently, we begin our account of movement-speed and spatial accuracy by
reference to the first distributional moment reflected in the functions for constant
error (CE).

Fullerton and Cattell (1892, Figures 3, 4) demonstrated that constant error
shifts occurred with changes in the amplitude of movement. However, Wood-
worth’s experiments (1899, Tables X VI, XVHI) illustrate more systematic and re-
vealing functions for constant error. As velocity demands increase within a given
movement amplitude, the absolute value for constant error alters from a positive
to a negative value. This connotes the change in tendency from spatial overshoot-
ing to undershooting as velocity increases. This is reflective in part of the range
effect which occurs in the reproduction of amplitudes without time constraints
(e.g., Brown, Knauft, and Rosenbaum 1958) and in the estimation of prescribed
temporal intervals (Clausen 1950). Woodworth’s data also show that the absolute
size of constant error which occurs in undershooting is greater than in overshoot-
ing. Thus the effect noted for constant error does not appear symmetrical over
the velocity continuum for any particular amplitude. Finally, Woodworth’s ex-
periments suggest that the zero crossing point for constant error occurs at ap-
proximately 50% of the maximum velocity for any prescribed amplitude.

Figure 8 depicts the proposed constant error function in the principal direc-
tion of motion for increases of average movement velocity, with four movement
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Fig. 8. Constant spatial error as a function of average movement velocity for equal in-
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amplitudes of equal increasing increments. Within each amplitude illustrated,
positive constant error increases initially to be followed by an apparent peak
which leads to a subsequent decrease up to approximately 50% of the maximum
velocity. After crossing zero, constant error follows an increasing negative trend.
However, in absolute terms the size of this negative constant error is increased
and undershooting continues up to a maximum average velocity for any pre-
scribed amplitude. The exact function for the asymmetry of under- and over-
shooting and the relative increment in constant efror as a function of amplitude
cannot be ascertained from existing data. For example, it is not certain whether
the peak overshooting error increases with equal increments of movement amphi-
tude. Nevertheless, the general function presented in Fig. 8 is consistent with the
available constant error data given by Fullerton and Cattell (1892) and Wood-
worth (1899).

In practice it is expected that the proposed constant error functions are
masked in the middle portion of the velocity range for a given movement ampli-
tude. This is because measurement errors at these conditions are as large as aver-
age constant error which will tend in practice to distort estimates of the proposed
function. This bias will be reduced at the extremes of the velocity range, par-
ticularly the high-velocity conditions, where, because of absolute size, constant
error shifts are most easily observed (e.g., Woodworth 1899).

An appreciation of the constant error function is important as it indicates that
the average attained response is not always equivalent to the imposed task con-
ditions. Thus assessment of the response variability functions must be made in
light of these constant error shifts. In the functions that follow we do not ac-
commodate this problem directly by plotting the variability function on the basis
of the attained average velocity. Rather, the obtained variability function is plot-
ted on the basis of the imposed task velocity constraints to allow direct contrast
with the attained constant error function illustrated in Fig. 8.

The proposed relationship between movement duration, amplitude, and stan-
dard unit error across the complete range of the movement velocity continuum is
depicted in Fig. 9. The error function is for the standard unit error generated in
the principal direction of motion for a discrete aiming task. A qualitative as-
sessment is provided below concerning movement parameter—error relationships,
which are shown within the boundary constraints of Fig. 9.

Figure 9 is constructed with the dashed lines representative of equal in-
crements between movement amplitude and the continuous lines representative
of equal increments between movement time. Three important and related as-
pects of the movement speed—accuracy relationship for variability are revealed.
Firstly, within a given movement time, the standard unit error decreases at a
negatively decelerating rate with constant increments in movement velocity. Sec-
ondly, within a given distance, the standard unit error increases in an ogival
fashion with increments in average movement velocity. Thirdly, gains in stan-
dard unit error are not proportional to equal increments in either amplitude or
time. Each of these general functions is now considered in some detail.
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Fig. 9. Standard unit error as a function of average movement velocity, movement time,
and movement amplitude. The error shown for movement amplitude (dashed lines) and
movement time (solid lines) represents equal increments within each movement parameter.
Physical, volitional, and measurement boundaries are represented by dotted lines, the de-
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The reduction of the standard unit error with increments of movement ve-
locity at a given movement time is consistent with the reinterpretation of the data
of Woodworth (see Figure 1) and Schmidt et al. (see Figure 7). This relationship
is apparently independent of feedback factors associated with time constraints, as
the function is observed with movement times as short as 140 ms (Schmidt et al.
1979) and as long as 3,000 ms (Woodworth 1899). Thus response variability is not
proportional to distance within a given movement time.

The ogival type error function for increments of movement velocity within a
given distance has not been generally recognized. This is because most examina-
tions of the speed-accuracy function have employed targets of a designated width
and on those occasions where actual measurement error has been recorded the
full velocity range has not been manipulated within a given distance.

Furthermore, as Philip (1936) has indicated, veridical estimates of error are
difficult to determine at less than 10% and greater than 90% of maximum
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velocity. The ogival-type function indicates that the standard unit error for a
given distance increases at an increasing rate to 50% of maximum velocity and
then increases at a decreasing rate to maximum velocity. The curvilinear function
at the lower end of the velocity continuum is consistent with the data sets of
Woodworth (1899) and Schmidt et al. (1979) and also, in absolute values, with
those using target tolerances (see the reinterpretation of Fitts” data in Figure 3
and the data of Bailey and Presgrave 1958, in their Figures 10 and 13). The data
given by Woodworth (1899) confirm a curvilinear function at the upper end of
the velocity continuum for any given amplitude.

Philip (1936) provided a clear demonstration of an ogival error function for
increments of velocity in a stylus-aiming task. The task was different from Fitts’
protocol in that subjects aimed a stylus at a hole inserted in a band of paper
which was affixed to a drum rotating at varying velocities. As the velocity of the
drum increased for a given preview amplitude the percentage of misses followed
an ogival error function. Thus the complete function for standard unit error
within a given distance is of an ogival morphology. It is unclear whether the am-
plitude function is symmetrical, as is the case with a true ogive, but there are no
available data which contradict this supposition.

Increasing movement time at any given amplitude decreases the standard
unit error in the form of a negative descending exponential. This implies that es-
timates of temporal duration in discrete aiming movements do not follow the
proportional principles as given in Weber’s law. An exponential function for tim-
ing variability as a function of temporal interval has been reported previously in
time estimation studies (e.g., Michon 1967; Wing and Kristofferson 1973a,b). It
is important to note that increasing amplitude at a given movement time pro-
duces a similar standard unit error function.

Analysis of skewness and kurtosis of the response distribution lends coher-
ence to the proposed interpretation of the constant error and standard deviation
functions for movement speed-accuracy (Newell and Hancock 1984). Figure 10
shows the response distribution of error for a given amplitude over the range of
achievable average movement velocities. The response distribution shifts from
high leptokurticness and a modicum of positive skewness at low velocity through
a normal distribution at 50% average velocity to high negative skewness and a
modicum of platykurticness at high average velocity (Fullerton and Cattell 1892).
Changes in either skewness or kurtosis do not cause changes in the standard unit
error function of the response error, although they may influence the second mo-
ment (or its variants) in particular circumstances (Newell and Hancock 1984).
Rather, an understanding of how all four moments vary with the kinematic con-
ditions is required to depict fully the speed-accuracy function. In principle, N
moments of a distribution can be calculated but in practice moments beyond the
fourth power tend to be unstable (Hoel 1971). )

Given the deviation from normality of the error distribution illustrated in
Fig. 10, it is apparent that discussion of the standard unit error or any variability
statistic of error cannot be undertaken meaningfully without reference to con-
comitant variations in the third and fourth moments or indeed the first moment.
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Fig. 10. Frequency distributions, each with an equal number of observations, for con-
ditions at a constant movement amplitude throughout the average movement velocity con-
tinuum. Deviations of skewness and kurtosis are presented and detailed in the text

Thus changes in kinematic constraints produce variations in response error
which are not captured sufficiently by assessment of the mean and standard devi-
ation. As an example, the ogival type function for standard unit error for velocity
increments within a given amplitude holds a different significance if the distri-
butions are normal than if they are skewed and peaked. We cannot ascertain the
relative contribution of shifis in the third and fourth moments and changes in
variability per se to the ogival function for standard unit error. Consequently, in
order to describe adequately differing distributions, the four descriptive statistics
are at least necessary. This is particularly significant in examining inferences
from distributions of response errors generated over the movement-velocity con-
tinuum,

Within the body of Fig. 9 the movement amplitude and time lines exhibit Sys-
tematic changes in slope as both amplitude and time increase. A graphic
example of this sequential change in slope is particularly obvious in the data of
Bailey and Presgrave (1958) as given in Fig. 4. As may be seen the slope of the
lines for amplitude decreases with equal increments across the range of values
shown. In addition, the separation between the lines of amplitude also decreases
as the absolute value ascends. In the illustration from the work of Bailey and
Presgrave, there is an interruption in this smooth incrementation where ampli-
tude change increases from 1 in. (2.54cm) to 2in. (5.08 cm) at the 10in.
(25.4 cm) value (see Fig. 4). These regularities for both slope and separation be-
tween increments of lines of amplitude are also true for the lines of movement
time as shown for empirical data in Figs. 1 and 7 and for our idealized version in
Fig. 9.

We have attempted to plot such regularities and specifically have taken val-

. ues for the slope of amplitude and time lines as shown in the data set of Schmidt
~ and his colleagues (Fig. 6). These data form what have been labeled K functions,
which relate the veridical value of each slope with the amplitude or time from
which it was derived. In calculating the respective K functions for amplitude and
- time we have as noted taken advantage of the absolute values reported in the ex-

-
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tensive data set of Schmidt and his colleagues, although these may have equally
as well been generated from the values reported by Woodworth (1899) as shown
in Fig. 1. The subsequent K functions as given in Fig. 11 illustrate that for vari-
able error, slopes of both movement amplitude and movement time decrease as
both time and amplitude increase. If, as is possible, these K functions were
generated for amplitude and time in standard unit error, rather than variable er-
ror as illustrated, then slopes for the amplitude lines should remain positive
while slopes for the movement time would be negative. This latter observation
indicates the juxtaposed nature of amplitude and time lines in standard unit er-
ror (see Fig. 9). However, it does not disturb the homeomorphic nature of the
space-time picture. Although the ordinates have not been equated (except for il-
lustrative purpose) the similarity of morphology is suggestive of an equal in-
crementation between values of time and amplitude within the constraints of the
data produced by Schmidt et al. (1979).

To appreciate the limits of the relationship proposed in Fig. 9, it is useful to
explore the various boundary conditions that may be assumed to exist. The dis-
tribution of errors at small amplitudes may not include the case where a trial or
trials are generated in a direction diametrically opposed to the criterion direction
of motion. In this situation, subjects are failing to achieve the objective of the
task in a qualitative rather than quantitative manner.

There is a maximum average velocity which may be generated at any given
movement amplitude. Fullerton and Cattell (1892, p. 115) demonstrated that the
minimum time to move through ascending amplitudes (10—70 cm) increases at a

401 [o] Distance
[o] Time
e
30+
2
b5 20
7]
10 |-
i i 1 1 I 1
10 20 30 40 50 60 (cms)
100 ' 200 300 400 500 (msec)

Fig. 11. The K functions (change of slope) for distance and movement time. One coinci-
dent point in the movement time function has been exempted from the construction of the
respective X functions. (From “Motor output variability: A theory for the accuracy of rapid
motor acts” by Schmidt, Zelaznik, Hawkins, Frank, and Quinn, Psychological Revievy,
1979, 86, 415-451, Figures7, 9. Copyright 1979 by the American Psychological Associ-
ation. Adapted by permission of the publisher and author)
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decreasing rate. Wadman, Denier van der Gon, Geuze, and Mol (1979, Figure 3)
indicated that over a limited range (6—32 cm), this relationship was essentially
linear, although an analysis of their slope and intercept indicates that such a
function is most probably curvilinear toward the origin at decreased movement
amplitudes. These studies have examined a limited range of conditions concern-
ing the maximum average velocity-movement amplitude relationship.

In a recent experiment, we (Newell, Hancock, and Robertson, 1984) have
examined minimum movement times to traverse ranges of motion from 2%% to
100% in an elbow flexion task. Results indicated that the maximum average ve-
locity increased at a negatively accelerating rate with increments of distance up
to 95% of the range of motion and this velocity limitation is reflected by Line A
in Fig. 9. This function suggests an additional physical boundary. There is a limi-
tation on the maximum average movement velocity that may be generated which
occurs at the intersection of Line A with the amplitude constraint dependent on
the length of the limb(s) utilized for activity (Line B). The functional limit to the
present relationship is probably dependent upon anatomical and morphological
constraints imposed upon the limb(s) used for movement. In practical terms this
boundary may be in part dictated by the constraints of the task at hand.

The above boundaries are determined by the task constraints and the physi-
cal capabilities of the human system while the final limitation (Fig. 9, Line C) is
related to the precision of the recording method(s). This boundary to the observ-
able movement-velocity spatial error function represents measurement error.
Although this 1s consistent across differing amplitude and time conditions it is re-
flected by the curvilinear function C in Fig. 9 due to the nature of the measure of
standard unit error. As previously noted, Schmidt et al. (1978), without stating
their precise method of assessment, estimated measurement error as approxi-
mately 0.6 mm. Although relatively small, such error is important as it aids in
masking the curvilinear nature of the contribution of varying movement am-
plitudes as movement velocity decreases toward the origin.

To summarize, Figs. 8—11 represent our interpretation of the movement-vel- | [
ocity spatial-error relationship. They have been developed from existing data for -
simple hand-aiming tasks. Some of the details of the function for each moment
remain to be determined and others remain to be verified. Nevertheless, the
functions developed represent a coherent framework which is consistent with the
data sets available including recent empirical findings (cf., Wright and Meyer
1983).

The speed-accuracy functions represent statistical manifestations of the move-
ment outcome for a range of movement amplitude-time combinations. The func-
tions demonstrate that movement accuracy must be considered on the basis of
the error distributions for the first four moments of each amplitude-time combi-
nation, rather than reliance on any single descriptive statistic. Furthermore, the
functions provide a basis for the prediction of movement error based upon the
estimate of minimal movement time for the amplitude traversed under a given
set of task constraints. This is possible because the estimate of minimal move-
ment time across the range of amplitudes represents the 100% maximal average
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velocity boundary. It is anticipated that the functions hold for all tasks although
the absolute level of movement error will vary with the task constraints.

The shifts in error on a proportional basis are small for any single descriptive
statistic. For example, the standard unit errors from Woodworth (1899) and
Schmidt et al. (1979) indicate that although the shifts are consistent across ampli-
tude-time conditions the change is within a bandwidth of 5% of the given ampli-
tude. These small changes have been masked in previous accounts because only
a limited range of the speed-accuracy function has been considered and the gen-
eral reliance on absolute measures of response accuracy rather than relative
measures.

Although the function for standard unit error is proposed as being consistent
across differing practice conditions, the precise relationship between the move-
ment parameters and the absolute size of error may change. Woodworth (1899)
noted that as any performer approaches his maximum speed or accuracy for any
task individual trials agree more and more closely, this being a phenomenon of
practice curves. He also stated that should a point be reached at which trials were
quite unvarying the absolute Iimit for that mode of particular task performance
would have been reached. The nature of the internal relationship between the
various movement parameters and how they contribute to standard unit error
will depend not only upon elements of practice but also upon the intrinsic space-
time bias of any individual task undertaken.

In accordance with previous findings (e.g., Begbie 1959; Beggs and Howarth
1970; Drury 1971) it is proposed that the movement-velocity spatial-error func-
tions will also apply to error generated in planes orthogonal to the principal
direction of motion, although the absolute size of such error will be considerably
diminished. We recognize that the measurement of spatial error in three dimen-
sions holds certain intrinsic problems. However, these specific problems are not
elaborated in the present chapter. There is no evidence available to indicate what
the function may be for tasks requiring radically different response dynamics but
there are, at present, no fundamental objections 1o the assertion that they will
follow the general relationships exhibited.

Attempts at relating spatial and temporal errors have been limited (Howells,
Knight Weiss, and Kak 1979; Newell 1980) partly because of the confinement of
studies to the original Fitts paradigm, where movement time is not an in-
dependent variable. However, there have been descriptions of timing error as a
function of movement velocity (e.g., Newell et al. 1979, 1980) and these are now
discussed as a precursor to the development of a movement speed timing-error
function and subsequently the space-time account of movement speed-accuracy.

Movement Speed and Timing Error
Movements may be constrained solely by spatial criteria but this cannot be the

case with time, as movement tasks always have spatial boundaries. Nevertheless,
certain tasks have time as a criterion in the sense of moving through a prescribed
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amplitude or arriving at a precise location in a criterion movement time. Timing
tasks have been employed to examine various theoretical issues in motor learn-
ing (e.g., Ellis, Schmidt, and Wade 1968; Newell 1974), but it is only recently that
descriptions have been developed of a unidimensional movement-speed timing-
accuracy relationship (Newell et al. 1979, 1980, 1982).

A consistent finding in discrete timing responses is that the shorter the move-
ment time the smaller the timing error (Newell 1976; Schmidt 1969). Timing er-
ror is the difference between the criterion movement time and the obtained
movement time for traversing a given amplitude. This may be the result of a
range effect, as with greater movement time more time is available for the re-
sponse to vary. Indeed, time-estimation studies involving simply key press re-
sponses suggest that such a range effect may be a contributor to error in temporal
estimation (e.g., Woodrow 1951).

A problem with most extant movement timing studies is that the independent
variables of duration and velocity have been confounded (e.g., Ellis 1969). Rarely
has movement time been manipulated independently of average movement
velocity. Consequently, it is commonly the case that high-velocity movements
have short durations and low-velocity movements have long durations. The data
from early studies which systematically varied movement time and velocity sug-
gested that movement velocity may affect timing accuracy (Ellis et al. 1968;
Schmidt and Russell 1972), although little was made at that time of these statisti-
cally nonsignificant effects.

In our laboratory we have developed a description of the movement-speed
timing-accuracy relationship (Newell 1980; Newell et al. 1979; Newell, Carlton,
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Fig. 12. Mean variability error movement time percentage (analogous to standard unit er-
ror) as a function of average movement velocity. (From Newell, Carlton, Carlton, and Hal-
bert 1980, Experiment 3)
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and Carlton 1982). At low velocities within a given distance subjects move too
quickly and undershoot the temporal criterion whereas at high velocities they
move too slowly and overshoot the criterion (e.g., Newell et al. 1980, Tables 2, 3).
The constant timing error function is the complement of the constant spatial er-
ror function.

Figure 12 is adapted from Newell et al. (1980, Experiment 3) and reflects the
movement-speed timing-accuracy function over movement velocities which
range from 5 to 225 cm/s. The variable timing error is plotted as a percentage of
movement time (standard unit error) in order to compare directly the timing er-
ror adduced from different movement times (100—600 ms). As Fig. 12 illustrates
standard unit error decreases curvilinearly as a function of the average velocity of
the discrete response. In Fig. 12 there is little or no difference for the standard
unit error between different movement times at the same average velocity, but a
graded movement time effect on the standard unit error has been shown with the
proportionality of error to movement time decreasing as the duration of the re-
sponse increased (Newell 1980; Newell et al. 1980, Figure 3). Timing error data
consistent with this velocity function have also been reported by Sherwood and
Schmidt (1980) and Tyldesly (1980).

In summary, the relative movement-speed timing error function appears to
be homeomorphic with the spatial-error function. This is particularly clear in
unidimensional tasks as the timing error may be directly reinterpreted in terms of
concomitant spatial error (Newell et al. 1982) but the function also holds for tim-
ing error measured in a stylus-aiming task (Newell 1980). There are only a few
data sets available to support the general timing error function which is present-
ed in the following section. Nevertheless, the synthesis given above reflects a co-
herent description and one that is consistent with the spatial-error formulation
presented previously.

The Movement-Velocity Temporal-Error Function

The work presented in the previous section together with that of the earlier pro-
jections of the standard unit error indicates that when temporal and spatial error
are measured in the same movement plane, the error functions are homeo-
morphic. To facilitate contrast with the constant spatial error and standard unit
error functions presented in Figs. 8 and 9, the constant temporal error and as-
sociated standard unit error functions will be shown separately.

The constant temporal error function is depicted in Fig. 13. Within a given
amplitude, the constant temporal error increases from zero to a modicum of
undershooting at low velocities, through zero constant error at approximately
50% of maximum velocity to a high degree of overshooting at high velocities. The
constant temporal error function is in effect the complement of the constant spa-
tial error function (cf., Figs. 8 and 13) in that movements are completed in a time
shorter than the respective criterion at low velocities, with the reverse occurring
at high velocities. Again, the constant error shift is not symmetrical around the
50% of maximum velocity for any given distance.
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+ Vid

p A

Constant Temporal Error

Average Movement Velocity

Fig. 13. Constant temporal error as a function of average movement velocity, for equal in-
crements of movement time

‘The standard unit error function for time appears equivalent to the standard
unit error function for space. It is probable that the actual proportions for these
errors may differ but their form will be homeomorphic. Therefore, the standard
unit error function for space, depicted in Fig. 9, also represents that for time. The
standard unit error for time is generally about 5% —15% of the response duration
whereas the standard unit error for space is between 0% and 5% of the amplitude
moved. As shown previously in Fig. 11, the slopes of the standard unit error lines
for amplitude and movement time (K functions) are in consonance with the
homeomorphic interpretation of the independent space and time functions. It is
worth noting that, unlike spatial error, timing error for a given movement time
decreases with gains in movement velocity regardless of whether error is mea-
sured on a relative or absolute basis. This is because variable timing error is con-
sidered in relation to the same movement time over changing velocities whereas
variable spatial error is considered over differing distances.

The response distributions for temporal error will also complement those for
spatial error (Fig. 10). High negative skewness and a modicum of platykurticness
will occur at lower velocities for a given distance and high leptokurticness and a
modicum of positive skewness will result at the upper end of the velocity con-
tinuum. This bias in the third and fourth moments of the temporal error distri-
butions for a given amplitude is shown in Fig. 14. Again the distributions are the
complement of the respective spatial error distribution depicted in Fig. 10.

When timing error is measured in a plane orthogonal to that employed for
spatial error the two functions may not be directly equated. The relationships ex-
pressed in Fig. 9 may be consistent for both temporal and spatial functions; how-
ever, the absolute size of error will vary in accordance with the plane of measure-
ment (e.g., Begbie 1959). For example, in the Fitts tapping task, movement time
is measured by contacting the horizontal plane, while spatial error is determined
by the distance from the vertical plane placed through the target, with which
contact is subsequently made. Hence, in studies which utilize Fitts’ protocol the
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Fig. 14. Frequency distributions, each with an equal pumber of observations, for con-
ditions at a constant movement time throughout the average movement velocity con-
tinuum. Deviations of skewness and kurtosis are presented and detailed in the text

movement time and spatial error functions are determined by cutting differing
planes of motion.

In addition, the constraints of the Fitts stylus-aiming task dictate that there is
a minimum movement time for the task which is considerably longer than both
the interval scale of most time-keeping instruments and zero time. This is be-
cause a certain finite time is taken to raise and lower the stylus irrespective of the
distance traveled in the principal direction of motion. Hence, the movement
speed-accuracy function does not pass through the origin for the Fitts’ stylus task
(Crossman and Goodeve 1963; Fitts 1954; Fitts and Peterson 1964). Our speed-
accuracy functions have been developed on the basis that graded movement
times from zero time can occur on a very small interval scale and thus the func-
tions (e.g., Fig. 9) tend toward the origin.

It is significant to note that in tasks with both space and time as criteria one
cannot trade speed for accuracy in the traditional sense. We have indicated that
one may trade spatial error for timing error but as these are different descriptions
of the same event a trade, in the traditional sense, is untenable. Only where spa-
tial and temporal errors are measured with reference to differing planes can a
trade of spatial and temporal error occur. Again, Fitts’ protocol may be viewed as
creating a somewhat artificial condition for a movement trade-ofl in this case.
This is not particularly useful if both space and time are criteria, although much
depends upon the constraints of the task under consideration.

The independent development of the spatial and temporal error functions
demonstrate that when both space and time are criteria for a task only a com-
prehensive space-time description of movement velocity—accuracy relationships
is sufficient. The spatial and temporal error functions are homeomorphic, provid-
ing a unitary description and suggesting a common ground for explanation. To
our knowledge there have been no attempts to describe movement-speed ac-
curacy relationship in these terms.

It should be recognized that the space-time functions proposed reflect the
movement outcome that ¢ypically occurs due 1o the constraints imposcd in speed-
accuracy studies. Changing the constraints on the subject in a movement ac-
curacy task could alter the resultant movement speed-accuracy functions. Thus
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there is not a single space-time error function but rather a limited range of space-
time functions according to task constraints (Newell, Carlton, and Hancock
1984). We now elaborate on the space-time perspective.

Movement Accuracy and Space-Time Considerations

The distinction between space and time as disparate entities may be perhaps sim-
ply a function of essential human experience. In scientific endeavour, the artifici-
ality of this division has long been acknowledged. Locke (1690) commented
upon the interdependency when he observed that expansion and duration mutu-
ally embrace and comprehend each other, where every part of space was in every
part of duration. This position is in contrast to Newton’s conception of time as a
homogeneous medium in which events occur. Bergson (1910) criticized Newton’s
conception on philosophical grounds and suggested that time is event related.
Subsequently, physicists have demonstrated the observer dependence of event
order when events occur at highly disparate spatial locations. Minkowski (1908)
in advocating the concept of space-time through the proposal of “world-points”
enquired whether anybody had ever noticed a place except at a time or a time
except at a place. In fact such was the mutual interdependency that Minkowski
proposed the complete elimination of the concepts of space and time, leaving on-
ly “space-time.”

It is axiomatic that movements which are generated to engage in action occur
within this referential frame. However, as human action occurs essentially within
a highly restricted spatial range, events appear upon a human scale as observer
independent. As a consequence and in spite of both philosophical and physical
developments, the Newtonian concept of time as absolute and measurable in a
systematic manner has been and still is used in the motor control domain and in
psychological investigation in general. Our current treatise has taken studies
which have used the Newtonian referential frame and has constructed a space-
time description account therefrom. However, we are aware that this space-time
description differs from that in which Lee (1980) has observers navigate through
the “world” (after Minkowski). It is conceivable that a space-time account of
movement accuracy in the latter sense of the concept may emerge from the cur-
rent work, which extracts information from accounts where the spatial and tem-
poral contributions to movement accuracy are viewed as separate entities.

From the Newtonian perspective, it is clear that in many actions a movement
or sequence of movements may be constrained to adhere to some greater or less-
er degree to either spatial or temporal criteria. In the motor learning domain this
is most evident in open skills where environmental contingencies are not entirely
predictable between successive trials (Poulton 1957). The preceding discussion,
which independently formulated space and time speed-accuracy functions, pro-
vides precursory arguments for the development of a space-time description of
movement accuracy. In addition, it should be apparent that a space-time account
is particularly appropriate where time is a set criterion of the performance rather
than a dependent variable.

A
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The unity of the space and time functions depends to a certain extent upon
the technique employed to measure each dependent variable. When the errors
are measured in relation to the same point in space and on the basis of move-
ment in the same plane then the space and time error functions are homeo-
morphic. An example of this situation was demonstrated by Newell et al. (1982)
when timing errors were determined for a variety of movement time-amplitude
combinations on the basis of the difference from the criterion time on passing a
point on a trackway, whereas spatial errors were determined by the distance
from the target point at the criterion time. When the subject crosses the criterion
spatial location earlier than the criterion movement time and decelerates after
crossing the spatial target, departures from the homeomorphic nature of the spa-
tial and temporal error functions may occur. However, for most movement con-
ditions the spatial and temporal errors when measured in this manner will be
homeomorphic as shown in Fig. 15A and B. In Fig. 15C and D the same record-
ing technique was utilized but now subjects have different amounts of preload on
the arm but attempt to travel the same distance in the same time (Carlton and
Newell 1985). The standard unit error for the spatial and temporal functions is
homeomorphic, reflecting the proposed space-time account of movement ac-
curacy.
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Fig. 15A-D. Standard unit error derived from timing error scores A and spatial error
scores B adapted from Newell et al. (1982). C and D are standard unit errors derived from
timing and spatial error scores of Carlton and Newell (1985)
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In summary, the movement speed-accuracy relationship is a space-time
problem. Emphasis may be placed upon the spatial or temporal consideration in
training procedures but understanding the entire problem requires a merging of
spatial and temporal measures into a space-time solution of the movement
speed-accuracy relationship. Such an approach is not unique to the domain of
movement.

Lee (1980) has recently proposed a space-time orientation in relation to the
general problem of visual-motor coordination and specifically the nature of the
information which is visually assimilated by the performer when interacting with
the environment. As a result, Lee has developed a formerly dimensionless vari-
able 7 which affords information for controlling space-time activity. Finally, from
an observer-independent perspective, Viviani and Terzuolo (1980) have demon-
strated the principle of an invariant space-time domain in skills such as cursive
handwriting and typewriting. In these skills the space-time topology is preserved
independent of the absolute level of scaling observed in the spatial and temporal
scales.

Implications of the Space-Time Description for Motor Control

In this treatise we have provided a coherent description of the speed-accuracy re-
lationship in movement control. In order to promulgate such cohesion we have
adopted a space-time perspective from which to approach the problem. This
space-time approach is predicated on the notion that individual consideration of
space and time artificially dichotomizes the phenomenon.

When space-time measures are considered in a single plane of motion their
functions for variability are homeomorphic and the functions for the primary
measure of central tendency, namely the distributional mean, are reflective
images. Consequently space and time are not disparate entities but rather are
direct reflections of each other in discrete movements. We point to Fitts’ recipro-
cal tapping protocol as responsible for obfuscating this observation as errors of
space and time in this approach, when measured, are for different movement
planes.

An immediate ramification of our approach is that in space-time tasks one
may not trade speed for accuracy; rather one may only trade spatial and tem-
poral error and often this trade is dictated by the nature of the task under con-
sideration. While most tasks have spatial criteria, fewer exhibit necessary tempor-
al criteria. However, this does not make the latter any the less space-time tasks, it
merely highlights one criterion in juxtaposition with the other.

In formulating the space-time approach it was observed that previous con-
structs were based upon limited consideration of the distribution of responses in
demand to kinematic impositions. In our work we have suggested that in addi-
tion to distinct consideration of both the mean (central tendency) and standard
deviation (variability), higher distributional moments must be considered as they
are positive and implicit in distributions. Particularly they are noticeable at the
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extremes of movement capability (i.e., maximum and minimum velocity for any
amplitude). Such considerations are necessary to understand the homeomorphic
space-time function for movement variability at differing kinematic coordinates.

The cohesion of the current account and its contrast with previous, limited
descriptions implies important failures in former theoretical accounts of the
phenomenon at hand. We suggest, not only do these constructs fail quantitatively
as they have accounted for only segments of the movement-speed trade-off, but
also qualitatively in that they fail to meet the self-imposed criteria for causality in
theoretical development. The appeals to lower levels of analysis for explanatory
power have largely confused rather than facilitated further development. We do
not feel it incumbent upon us to produce a similar and poorly founded theoreti-
cal position. Rather, we would care to make clear the importance of the current
description.

First, there is a strong, although not causal, link between the kinematics and
kinetics of movement, as Newtonian mechanics dictates. This position, previously
advocated by Schmidt etal. (1979), implies principled relationships between
kinematic and kinetic parameters of movement. However, unlike Schmidt and
his colleagues we do not wish to suggest that this is causal in nature. The space-
time description herein contained facilitates the development of understanding
such connections and is the subject of current research efforts (Newell, Carlton,
and Hancock, 1984; Schmidt and Sherwood 1982). Second, although our description
militates against an iterative feedback model, and in this we are not the first (Legge
and Barber 1976), we do envisage a role for feedback in movement control. However,
our central concern is that such a process is not manifest in our description due to
the distributional nature of the error measure. We believe the multiple-trial ap-
proach masks modes of control by a process of trial averaging. It is theseSpecific
elements of control that a causal theory would wish to address. In consequence, a

Vo . . . . - .. .
single-trial analysis is advocated as one which, if receiving more attention, may

be used to approach such problems. :

Furthermore, although single-trial analysis may elucidate certain control pro-
cesses, ongoing strategies for minimizing variation in performance should be ad-
dressed by some form of time-series examination. Our description suggests that
the output of the motor system, in response to kinematic criteria, is a parametric
production which is modified in consideration of physical limitations. That such
output occurs suggests some form of sequential sclection of response and those
processes which produce such a response are those which it is necessary for fu-
ture research to address.
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