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Toward a New Theory of Motor Synergies

Mark L. Latash, John P. Scholz, and Gregor Schöner

Driven by recent empirical studies, we offer a new understanding of the degrees of 
freedom problem, and propose a refined concept of synergy as a neural organiza-
tion that ensures a one-to-many mapping of variables providing for both stability 
of important performance variables and flexibility of motor patterns to deal with 
possible perturbations and/or secondary tasks. Empirical evidence is reviewed, 
including a discussion of the operationalization of stability/flexibility through 
the method of the uncontrolled manifold. We show how this concept establishes 
links between the various accounts for how movement is organized in redundant 
effector systems. 
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The central nervous system knows nothing about muscles, it only knows 
movements.

J. Hughlings Jackson (1889, p. 358)

The Degrees-of-Freedom (DOFs) Problem
Voluntary actions consist of movements directed at motor tasks. Humans reach 
for objects, and then grasp and handle them. Humans locomote, transporting their 
body through space to desired locations while remaining upright. At every level of 
analysis of the system for the production of voluntary movements, there are more 
elements contributing to performance than are absolutely necessary to solve these 
motor tasks. For instance, the body has more joints than needed to position the 
center of mass in space, the human arm has more joints than needed to configure 
the spatial position and orientation of the hand on an object. Similarly, the hand 
has more fingers than needed to generate a grasp.

This problem of redundancy has been recognized as a central one from the 
earliest days of the scientific study of motor control. N.A. Bernstein developed 
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his theory of multi-level hierarchical control of voluntary movement (1947, 1967) 
around the degrees of freedom (DOF) problem. He had performed, for instance, 
a study of the kinematics of hitting movements when professional blacksmiths 
stroke the chisel with the hammer. His subjects were perfectly trained: They had 
performed the same movement hundreds of times a day for years. Bernstein noticed 
that variability of the trajectory of the tip of the hammer across a series of strikes 
was smaller than variability of the individual joint trajectories of the subject’s arm 
holding the hammer. Since the brain obviously could not send signals directly to 
the hammer, Bernstein concluded that the joints were not acting independently but 
correcting each other’s errors. This observation suggested to him that the central 
nervous system (CNS) did not try to find a unique solution for the problem of 
kinematic redundancy by eliminating redundant DOFs but rather used the appar-
ently redundant set of joints to ensure more accurate (less variable) performance 
of the task. Of course, his observations were suggestive rather than conclusive. For 
instance, variability in the spatial position of the hammer cannot be compared to 
the degree to which joint angles are reproducible, as these variables are in incom-
mensurate units. Moreover, the initial joint configuration was not controlled, so 
Bernstein’s finding likely reflected, more generally, the nervous system’s ability 
to generate flexible solutions to the motor task, allowing the hammer to reach the 
same terminal point from slightly different initial conditions and to compensate 
for disturbances in the course of the movement.

Analogous problems arise at other levels of analysis. Typically, more than one 
muscle contributes to the torque generated at any individual joint. Which combina-
tion of muscle forces does the CNS select to achieve a particular amount of torque? 
Muscles consist of a large number of motor units, which together are capable of 
generating a particular amount of muscle activation (or force) in many different 
ways. How and in what sense the CNS solves the DOF problem (the “Bernstein 
problem,” Turvey, 1990; Latash, 1996) is one of the fundamental problems of motor 
control. A number of different approaches to this problem exist in the literature. 

Elimination

A first position is that the CNS solves the problem by reducing the number of 
DOFs to the ones necessary to perform the task. Such “freezing” of DOFs had 
been postulated by Bernstein, and is commonly invoked in contemporary studies 
of human motor behavior (e.g., Newell, 1991; Vereijken et al., 1992).

A related position comes from the observation that in some circumstances, 
movement takes place within a sub-space of the full space of mechanically possible 
movements. Evidence for such constraints comes from Donder’s law which, when 
applied to eye movements, states that the angular gaze positions do not routinely 
make use of all three DOFs but are constrained to a two-dimensional surface when 
the head is stationary (Donders, 1847). Donder’s law has been shown to be valid 
for some four-DOF arm movements, but to break down for arm movements with 
more DOFs (Gielen et al., 1997). When valid, the phenomenon captured by this 
law would reflect a more abstract form of “freezing” in which combinations of 
DOFs are constrained to change along a particular direction in the space of move-
ment elements.
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The notion of elimination of DOFs has been invoked primarily at the kinematic 
level, not to our knowledge to account for redundancy at the levels of forces, muscles, 
motor units, or during multi-limb tasks.

Optimization

These approaches to the problem of motor redundancy involve application of opti-
mization principles based on certain mechanical, engineering, psychological, or 
complex cost functions (reviewed in Seif-Naraghi and Winters, 1990; Rosenbaum 
et al., 1995). Most straightforward optimization approaches essentially select a cost 
function and find a unique solution that ensures its maximal or minimal value. More 
sophisticated optimization methods are compatible with the ideas advocated in this 
paper (e.g., Mussa-Ivaldi & Hogan, 1991; Todorov, 2004) and may be viewed as 
complementary to the analysis described later.

Synergy

The third class of solutions can be traced back to classical works by Hughlings 
Jackson (1889; see the epigraph), Babinski (1899), and Sherrington (1910). 
However, in contemporary motor control literature, this notion is most commonly 
associated with the name of N.A. Bernstein. The idea is clearest in the context of 
muscle synergies: Multiple muscles are bound together such that a central control 
signal jointly and proportionally activates all muscles in the synergy. When task 
demands vary, the control signal to the synergy changes, leading to parallel changes 
in all muscles bound together in the synergy. By extending the notion of muscle 
synergies to groups of muscles that span multiple joints, the coordination of multiple 
DOF may be understood in a similar way. To avoid misunderstanding, we would 
like to state upfront that this understanding of synergies differs qualitatively from 
what we propose further in this article.

There is a common feature across the three mentioned approaches. They all 
view the existence of numerous DOFs as the source of computational problems 
for the CNS (even if it is ultimately useful for adaptive, flexible behaviors). For 
example, the idea of eliminating (“freezing”) redundant DOFs assumes that it is 
easier for the central nervous system to control movements if it has to manipulate 
fewer variables. This is questionable. For example, not moving a joint of a limb 
does not relieve that joint of being controlled. To the contrary, the interaction forces 
and moments of force that arise as the other joints along the kinematic chain are 
moved require active control to stabilize the joint at its frozen value. Latash, Aruin, 
and Zatsiorky (1999), for instance, showed complex control signals to a “frozen” 
wrist joint when a pure elbow movement was generated.

Our view on the apparently redundant design of the system for movement 
production is quite different. We do not consider the numerous DOFs as a source 
of problems for the CNS but rather as a luxury that allows the controller to ensure 
both stability of important performance variables and flexibility of patterns to deal 
with other task components and possible perturbations. As follows from a few 
models, discussed later in this article, this luxury does not necessarily mean an 
increased cost (for example, computational). To us, the main question with respect 
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to the problem of motor redundancy is: How does the solution to the DOFs problem 
leave the motor control system more powerful than a system that would start with 
fewer DOFs from the outset?

In this article, we will argue that current approaches to the DOFs problem deal 
predominantly with how combinations of DOFs are selected by freezing, by opti-
mization, or by binding into groups with proportional scaling of the DOFs within 
a group. We will identify the concept of “sharing” as the thread common to these 
approaches (see the section headed “Quantitative Approaches to Studying Synergies: 
Sharing Patterns”). We will then argue that these approaches to the DOF problem 
fail to address another important feature of behavior of multi-element systems, 
namely how performance is allowed to show both stability against perturbations 
and flexibility to solve concurrent tasks. In the section “Quantitative Approaches 
to Studying Synergies: Flexibility and Stability,” we will show how analyzing the 
structure of motor variability enables the quantification of this second feature.

We start with an explicit definition of synergy that is going to be analyzed and 
explored in further sections: Synergy is a neural organization of a multi-element 
system that (1) organizes sharing of a task among a set of elemental variables; and 
(2) ensures co-variation among elemental variables with the purpose to stabilize 
performance variables. Further, we will use several examples of systems and tasks 
with different sets of elemental variables and different performance variables. For 
brevity, we will use “synergy” in reference to patterns of co-variation of elemental 
variables, rather than to the underlying neural circuitry.

Two Components of Synergies: Sharing and 
Flexibility/Stability

Individual finger forces are expected to vary from trial to trial. These variations 
may be independent leading to circular distributions of data points or they may 
co-vary. For example, if finger forces always satisfy the equation F

1 
+ F

2 
= 20 

(the slanted thin line in Figure 1), the task is performed perfectly despite possible 
variations in finger forces. Generally, if smaller than expected forces produced by 
one finger are accompanied by larger than expected forces produced by the other 
finger (negative co-variation, ellipses in Figure 1), the total force may be expected 
to vary less as compared to the circular force distributions. We will refer to such a 
synergy as stabilizing the total force and view co-variation patterns among finger 
forces as reflecting how well the synergy stabilizes the performance variable and 
how much flexibility it allows in the space of finger forces. Note that the average 
location of the data distributions (sharing) and the shape of the distributions (stabil-
ity/flexibility) are generally independent and hence may be viewed as two basic 
characteristics of a synergy. We conclude from this example that synergies must 
be characterized not only by sharing patterns but also by patterns of co-variation 
reflecting the feature of stability/flexibility.

Consider an example from a different level of analysis. The equilibrium-point 
(EP) hypothesis of motor control (Feldman, 1966) states that the CNS uses time 
functions of variables that parameterize the neuromotor system in a task-specific 
way and define sequences of equilibrium states of this system. These variables 
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have been associated with thresholds (λ) of the tonic stretch reflex of participating 
muscles. In the simplest case, single muscles composed of multiple motor units 
may be viewed as a multi-element system. When the CNS defines a time shift of 
λ, this results in a certain pattern of motor unit recruitment.

A set of involved motor units may show both preference for particular sharing 
patterns (for example, based on the well-established size principle, Henneman et 
al., 1965) and the stability/flexibility feature. Imagine, for instance, that for some 
reason, in one of the trials, one motor unit stops firing. The muscle force will drop, 
and given unchanged external load, the muscle fibers will stretch. This will lead 
to an increase in the spindle activity and an increase in the excitatory input into 
the alpha-motoneuron pool via the tonic stretch reflex loop. Other motor units will 
increase their firing rate and/or new motor units will be recruited such that the 
muscle will reach the same equilibrium state defined by λ and the external load. In 
this example, a particular neurophysiological mechanism, the tonic stretch reflex, 
unites motor units within a muscle into a synergy. Such co-varied changes in the 
contributions of alpha-motoneurons to muscle activation may be analyzed both in 
time (as above) and across repetitive attempts to oppose the same external force 
at the same muscle length.

Figure 1—An illustration of the two basic features of synergies. A person tried to produce 
the same total force of 20 N with two fingers. Three sharing patterns are illustrated: 5:15 N, 
10:10 N, and 15:5 N. This means that with changes of total force (F

TOT
) both finger forces 

change in the same direction (i.e., positive co-variation along the dashed lines). Data distri-
butions over repetitive trials may form circles (not a synergy) or ellipses (force stabilizing 
synergies, or negative force co-variation). Individual finger force variations are similar for the 
circles and ellipses while the total force (F

TOT
) shows smaller variations for the ellipses.
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Quantitative Approaches to Studying Synergies: 
Sharing Patterns 

Discovering Sharing Patterns Through Pair-Wise Correlation 
and Matrix Factorization

As a movement unfolds, such as the hand pointing towards a target, the different 
DOFs typically change their values simultaneously and systematically to effect 
the change in hand position. The fact that there is a well-defined trajectory at all 
implies that changes in the values of individual motor elements, e.g., changes in 
joint angles, are coupled along time. It has been assumed that such regularities of 
motor output are accomplished not by the control of the individual motor elements, 
but by uniting the elements into groups (e.g., structural units in Gelfand and Tsetlin, 
1966; Turvey, 1990).

The identification of sharing patterns is often based on pair-wise correlations 
between elemental DOFs that result from their simultaneous change as a task 
evolves in time or in conjunction with global changes in movement parameters, 
for example, velocity. For example, Jensen et al., (1994) correlated rotations in 
the proximal and distal joints of the leg to determine changes in their coupling 
during the development of kicking. Similar descriptions of what we call sharing 
patterns were provided for a variety of tasks including vertical posture, locomo-
tion, reaching, finger force production, etc. (Smith et al., 1985; Macpherson et al., 
1986; Desmurget et al., 1995; Li et al., 1998; Santello & Soechting, 2000; Pelz 
et al., 2001). Correspondingly, synergies have been associated with correlated 
outputs of muscles/joints/effectors in voluntary multi-joint limb movements, force 
production tasks, quiet standing, locomotion, anticipatory postural adjustments, 
quick corrective reactions to perturbations, and other motor actions and reactions 
(Nashner & Cordo, 1981; Alexandrov et al., 1998; Li et al., 1998; Gottlieb et al., 
1996; Vernazza-Martin et al., 1999; Saltiel et al., 2001; Ivanenko et al., 2004). 
Clinical studies reported atypical sharing patterns among elemental variables in 
different patient groups and interpreted them as atypical synergies (Levin et al., 
2002; Cirstea et al., 2003; Beer et al., 2004).

Pair-wise correlation techniques may be useful in addressing questions of 
coordination involving a limited set of effectors but are, of course, inadequate when 
studying more common functional tasks that involve large redundant sets of effec-
tors. A more comprehensive approach to identifying correlated changes in the values 
of motor elements requires the use of more robust matrix factorization techniques 
such as principal component analysis or PCA (Mah et al., 1994). PCA results in 
the identification of a smaller set of linear combinations of the original variables, 
which some authors refer to as synergies. For example, Mah et al. (1994) used PCA 
to identify normal and atypical linear combinations of joint and segmental angles 
for human locomotion. Combinations of original variables identified with PCA and 
similar procedures are sometimes considered basic synergies that can be combined 
to form functional synergies for particular behaviors (e.g., Tresch et al., 2006). PCA 
has provided a powerful tool for identifying stable groupings of elemental variables 
(modes) for a variety of motor behaviors (Alexandrov et al., 1998; Ivanenko et al., 
2004; Sanger, 2000; Santello et al., 1998; Shim et al., 2005).
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Alternative multivariate approaches to the use of PCA have been introduced 
recently (Tresch et al., 2006; Hart & Giszter, 2004). For example, Saltiel et al 
(2001) applied non-negative matrix factorization procedures, involving gradient 
descent, to identify modes of muscle action underlying the frog withdrawal reflex. 
Tresch et al. (2006) recently evaluated the ability of a number of these approaches, 
including PCA, to identify the appropriate mode combinations in simulated data 
sets for which the muscle modes were known. 

What Are the Elemental Variables That Form the Basis for 
Synergies?

When performing infant cardiopulmonary resuscitation, the rescuer’s index, middle, 
and ring fingers apply force to the infant’s chest to facilitate circulation but not 
so forceful as to injure the infant (American Heart Association, 2005). Control of 
the total force applied can be considered to result from a synergy that includes the 
individual finger forces as elements. But should individual fingers be considered 
the elemental variables of the synergy? In our approach to synergies, elemental 
variables are defined as those DOFs whose values can be changed, in principle, 
by the controller while keeping the values of other DOFs unchanged. When a 
person tries to produce force with an individual finger, other fingers of the hand 
also show force production, a phenomenon called “enslaving” (Ohtsuki, 1981; Li 
et al., 1998). Enslaving is due to both peripheral connections among the fingers 
such as shared muscles, inter-digit tendon connections, and to neural factors such 
as overlapping cortical representations for individual fingers (Leijnse et al., 1993; 
Kilbreath & Gandevia, 1994; Schieber, 2001). Enslaving is not task specific but 
may induce co-variations of finger forces that may be confused with task-specific 
sharing patterns (Latash et al., 2001).

To disambiguate these two sources of co-variation, the notion of modes as 
elemental variables has been introduced (Latash et al., 2001; Scholz et al., 2002; 
Danion et al., 2003). As illustrated in Figure 2, there is one mode corresponding to 
desired involvement of each specific finger, but each mode leads to force produc-
tion by all fingers.

Formally, a finger force vector F may be represented as a linear transformation of 
a mode vector M (both M and F have the dimension n equal to the number of fingers) 
as: 

 F = [E]*M,  (1)

where E is a n × n transformation matrix. Hence, the E matrix can be computed for 
a subject based on data from trials when the subject tries to produce total force ramp 
profiles by pressing with one finger at a time. For example, if only index (I) and 
middle (M) fingers of a hand are involved in a task:

 E
 
= 

€ 

∆fI , I ∆FI ∆fI , M ∆FM

∆fM , I ∆FI ∆fM , M ∆FM

 

 
 
 

 

 
 
 

      (2)

where ∆fj,k and ∆Fk are the changes of individual finger force j (j = I, M) and the 
change of total force produced during the ramp when subjects were instructed to 
press only with finger k (k = I, M). This experimentally reconstructed matrix can 



 Motor Synergies  283

Figure 2—An illustration of the mode hypothesis. The controller defines a pattern of shar-
ing among elemental variables (modes) corresponding to desired involvement of individual 
fingers. Each variable leads to force production by all fingers because of enslaving. The 
effects of elemental variables are summed up and attenuated (reflecting the force deficit 
phenomenon, Li et al. 1998) to produce finger forces.

now be used to compute changes in force modes based on experimentally recorded 
changes in finger forces:
 

€ 

dM = E −1 dƒI

dƒM

 

 
 

 

 
  

(3)

The mode concept is not always needed. For example, at the kinematic level, joints 
are considered to be elemental variables because voluntary motion of a joint while 
keeping the other joint angles constant seems to be possible. Activation of an individual 
muscle, by contrast, does not seem to be generally possible without specific feedback, 
and the mode concept is needed in that domain to arrive at candidate elemental variables 
(Krishnamoorthy et al., 2003b; 2004). 

Quantitative Approaches to Studying Synergies: 
Flexibility and Stability

Concept of the Uncontrolled Manifold (UCM)

While most research in motor control has focused primarily on the average perfor-
mance over trials, investigators of rhythmic movement coordination have found that 
the variance of performance is an equally fundamental measure. This was based 
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on the notion that movement patterns emerge as stable states from the coupling 
of DOFs. This approach, invoking terms like “coordinative structures” (Easton, 
1978; Turvey, 1990) or “dynamical patterns” (Schöner & Kelso, 1988), builds on 
the language of dynamical systems theory, in which “stability” is the capacity of a 
pattern to resist internal or external perturbations (sometimes addressed as “noise”). 
The variability from trial to trial or, in rhythmic movement, from cycle to cycle, is 
therefore one of several possible measures of stability.

Most work based on a dynamical systems perspective has been concerned 
with the relative timing among limbs, among effectors, or between effectors and 
perceived external rhythms (reviewed in Schöner, 2002). Transferring these ideas 
from relative timing to posture and trajectory formation, Schöner (1994; 1995) 
postulated that the patterns of elemental variables could be interpreted in terms 
of stability of relevant performance variables. Later, Scholz and Schöner (1999) 
developed a technical procedure, the method of the “uncontrolled manifold” 
(UCM), for testing whether trial-to-trial variability of elemental variables shows a 
structure interpretable as stabilizing particular performance variables. The method 
and approach have been refined and elaborated over the past several years as a 
result of experimental studies of a number of functional tasks (Scholz & Schöner, 
1999; Scholz et al., 2000, 2001, 2002, 2003; Latash et al., 2001, 2002b; Tseng et 
al., 2002, 2003; Krishnamoorthy et al., 2003b, 2004; Domkin et al., 2002; Yang 
& Scholz, 2005; Kang et al., 2004). Here we propose that the structure discovered 
in the variance of multi-DOF systems using the UCM approach reflects the stabil-
ity/flexibility feature of synergies. The UCM method may therefore be used to 
characterize that feature quantitatively.

Consider a planar three-joint arm, which controls the tip of a pointer in two 
dimensions (Figure 3A). This arm is redundant, in that multiple combinations of 
the three joint angles may achieve the same two-dimensional pointer-tip position 
along its path from a starting position (S) to a target (T). Two such configurations 
are shown in Figure 3A at three different time points along the pointer’s path. The 
path of the pointer in end-effector space illustrated in Figure 3A can be represented 
as well in the space of the three joints (Figure 3B, block dots correspond to the 
illustrated joint configurations), where the dashed line represents the average joint 
trajectory across a series of reaches. The black lines orthogonal to this path represent 
ensembles of joint configurations compatible with the same end-effector position 
at that point in time, or a manifold of joint angles (the UCM). These are illustrated 
for the three different end-effector positions in Figure 3B.

The idea is to use the UCM concept to partition the variance of the elemental 
variables into two components, one that affects and one that does not affect the 
value of a particular performance variable. Note that the variance analyzed here is 
across repetitions of the task at a particular movement phase.

In the example of Figure 3, the joint configuration realized at a particular 
movement phase (e.g., at t

1
) can be represented as a point in the three-dimensional 

joint space. Plotting the joint angles across all such trials for the same phase 
results in a cloud of data points in joint space. The shape of this cloud in relation 
to a particular UCM reveals the extent to which coordination of the joints acts 
to stabilize the performance variable (pointer-tip coordinate) at its average value 
and, related, provides an indication of how flexible is the coordination (Figure 4). 
If the cloud of data points is elongated along the UCM, then most variability of 
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Figure 3—An illustration of a planar three-joint arm, which controls the tip of a pointer in 
two dimensions (A). The pointer moves from a starting position (S) to a target (T). Two such 
configurations are shown at three different time points along the pointer’s path. The path of 
the pointer in the space of the three joints is shown in panel B. The black dots correspond 
to the illustrated joint configurations. The dashed line represents the average joint trajectory 
across a series of reaches. The black lines orthogonal to this path represent ensembles of 
joint configurations compatible with the same end-effector position at that point in time, or 
a manifold of joint angles (the UCM).

the joint configuration lies in directions in joint space that do not affect the value 
of the relevant performance variable represented by the UCM (here, the Cartesian 
coordinates of the pointer-tip; Figure 4A or particularly C). If the cloud of data 
points is spherical (Figure 4D), then there is no synergy among the joints acting to 
stabilize the endpoint coordinate, although the joints may be united in a synergy 
that stabilizes a different performance variable. Please keep in mind that here we 
consider a very simple example with a uni-dimensional UCM sub-space in a two-
dimensional space of elemental variables. In general (see later), indices of variance 
have to be normalized by the number of dimensions (DOFs) within corresponding 
sub-spaces. Note also that this example assumes that “all DOFs are created equal,” 
i.e., the effects of their deviations from an average value on a selected performance 
variable are adequately reflected in the formal relation between small changes in 
the DOFs and changes in the performance variable (the Jacobian).

Note that a spherical cloud of data points may be large (sloppy control of 
each elemental variable) or small (very precise control of each elemental variable, 
Figure 4D). In the latter case, an acceptable level of performance is achieved using a 
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different control strategy, that of producing a stereotypical time profile of all elemen-
tal variables and not making use of the flexibility afforded by the redundancy of the 
motor system. Such a control strategy might be acceptable in reaching the goal, but 
it may make it more difficult to respond to unexpected external perturbations and to 
perform secondary tasks simultaneously with a primary task (e.g., flipping a light 
switch with the elbow while transporting a full glass of wine in the hand).

The UCM itself may be non-linear (solid, slightly curved lines in Figure 3B). 
Because analysis of variance is a linear formalism, the UCM must be approxi-
mated linearly to make this idea quantitatively operational (dashed lines in Figure 
3B). This linearization is obtained by computing the null space of the Jacobian, 
a matrix of partial derivatives representing the effect of small changes in each 
elemental variable (joint motions in our example) on the value of the task-relevant 
performance variable (endpoint position). The null space is tangential to the UCM 

Figure 4—Schematics of clouds of data points from different trials (ellipses) and their 
relationship to the UCMs (dashed, short lines approximated by the straight solid lines 
are shown for three endpoint locations) at three phases along the joint space trajectories 
(dashed, thick lines) of Figure 3. (A) Structure of the data is such that the major axes of the 
ellipses are oriented parallel to the UCMs, indicating that variability is compressed in the 
orthogonal direction, stabilizing the pointer position. As a result of learning, both axes of 
the data ellipses may be compressed (B), there may be variance compression orthogonal to 
the UCMs and an increase along the UCMs (C), or greater variance compression along the 
UCMs than orthogonal to the UCMs (D). See text for details.
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at a particular configuration of elemental variables. Typically, the mean configura-
tion across trials is chosen as an approximation of the desired configuration. The 
subspace in joint space orthogonal to the null space is termed the range space of 
the Jacobian. In robotics, null space and range space are used to partition effec-
tor velocities. Here, by contrast, these subspaces are used to partition variance of 
effector configurations.

Each point in the cloud of data points is then projected into the null and into 
the range space of the Jacobian. The variance of the projections within each sub-
space is then obtained. The variance of the null space projections (V

UCM
) provides 

an indication of the extent to which flexible combinations of elemental variables 
across repetitions lead to the same value of the performance variable under consid-
eration. The variance of the range space projections (V

ORT
) reflects combinations 

of the elemental variables that lead to changes in that performance variable across 
repetitions.* Thus, V

UCM
 >> V

ORT
 indicates that flexible combinations of elemental 

variables produce a relatively invariant, stable value of the performance variable. 
For a more formal description of how the UCM method can be applied to analysis 
of particular tasks, we refer the reader to our earlier publications (Scholz & Schöner, 
1999; Scholz et al., 2000; Latash et al., 2001; Krishnamoorthy et al., 2003b).

A General Scheme of Analysis Within the UCM Approach

Practical application of the UCM method for quantitative analysis of synergies 
involves a number of steps that may be non-trivial. These involve:

Step 1: Selection of Elemental Variables. We have partly addressed this step 
in the earlier section “What are the elemental variables that form the basis for 
synergies?” Selection of elemental variables is intimately related to selection of 
an appropriate level of analysis. Depending on the particular research questions, 
the variables can be mechanical (such as forces, moments of forces, angular and 
linear displacements, etc.) or electrophysiological (for example, levels of muscle 
activation). Since the ultimate goal of analysis is to discover patterns of task-
specific co-variation among elemental variables that may or may not stabilize a 
particular feature of performance, one would like a set of elemental variables to be 
free of task-independent co-variations. Examples of such co-variations are effects 
of enslaving among finger forces (Zatsiorsky et al., 2000) and muscle groups with 
parallel scaling of the muscle activity within a group (Merkle et al., 1998; Ivanenko 
et al., 2004, 2005; Ting & Macpherson, 2005). To deal with this problem, an idea 
of modes has been introduced (see the earlier section “What are the elemental 
variables that form the basis for synergies?”; Danion et al., 2003; Krishnamoorthy 
et al., 2003a). The idea of modes is similar to the concept of functional DOFs 
(reviewed in Li, 2006).

Another important issue is not to include into analysis elemental variables 
that are irrelevant to the task. If changes in an elemental variable have no effect 

*In earlier papers, different (confusing) terms have been used for V
UCM

 and V
ORT

 such as V
COMP

 (com-
pensated variance) and V

UN
 (uncompensated variance), and GEV (goal-equivalent variance) and NGEV 

(non-goal-equivalent variance) (Latash et al., 2001; Tseng et al., 2003). We apologize for the messy 
terminology and in this article will stick to the V

UCM
 and V

ORT
 nomenclature. 
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on performance, obviously all its variance will be within the UCM (V
UCM

) thus 
artificially inflating that index.

Step 2: Selection of a Performance Variable. One of the most exciting oppor-
tunities afforded by the UCM method is to analyze the same data set with respect 
to different performance variables, as if asking the system: “Are you a synergy 
stabilizing such-and-such performance variable?” This question has been referred 
to as a “control hypothesis” (Scholz & Schöner, 1999; Scholz et al., 2000). In 
general, any performance variable that is affected by changes of a set of elemental 
variables can be selected.

Step 3: Creating a Linear Model of the System. At this step, relations between 
small changes in elemental variables and the selected performance variable are 
computed and united into the Jacobian matrix, J. In some cases, J may be com-
puted based on the geometrical properties of the system, for example, in analysis 
of multi-joint kinematic synergies (e.g., Scholz et al., 2000). In other cases, J has 
to be discovered experimentally, for example, using methods of linear regression 
(e.g., Krishnamoorthy et al., 2003b). After a J matrix is computed, its null-space 
can be used as a linear approximation of the UCM. The null-space is computed for 
given values of J. These values will be different for each point in the movement, 
consistent with the changing geometry of the system. Typically, we use the average 
value of the joint configuration and assume this to be a reasonable approximation 
to the desired value of the control system.

Step 4: Partitioning Variance into V
UCM

 and V
ORT

. Finally, a set of data can be 
used to compute projections of variance in the space of elemental variables onto 
the UCM and onto its orthogonal complement (V

UCM
 and V

ORT
, respectively). Such 

analyses were typically run across data measured in a number of trials at compa-
rable phases. However, in certain special cases, the analysis has also been applied 
to analysis of data points collected within a single trial (Scholz et al., 2003). The 
magnitudes of V

UCM
 and V

ORT
 are further normalized by the number of DOFs in the 

corresponding sub-spaces and compared quantitatively. If V
UCM

 is statistically higher 
than V

ORT
, the control hypothesis may be considered supported, and an index of a 

synergy may be computed, for example, the ratio of the two variance components 
or their normalized difference.

Example Application of UCM Analysis: Sit-to-Stand Action

As an example, we review how the UCM approach has been used to determine 
the flexible patterns of joint coordination that stabilize the path of the center of 
mass of the body or of the head position during a sit-to-stand task (Reisman et al., 
2002a; Scholz et al., 2001). In all such studies, individual axes of joint rotation 
were assumed to be independent elemental variables. The Jacobian was computed 
based on the geometry of the effectors.

In these studies, subjects performed the sit-to-stand task under different 
constraints, in each case controlling for subjects’ starting position. Performances 
were studied on normal and narrow bases of support with the eyes open or closed 
(Scholz & Schöner, 1999; Scholz et al., 2001). Several performance variables 
were evaluated, for example, the horizontal and vertical position of the center of 
mass (CM), head position and orientation, and momentum of the CM (Reisman 
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et al., 2002a). In each case, a different geometric model was developed relating 
each performance variable to the space of joint motions. Thus, the variance in joint 
space was partitioned with respect to the appropriate Jacobian matrix, depending 
on the performance variable being tested. Regardless of the task constraints, the 
instantaneous horizontal CM position led to V

UCM
 > V

ORT
, while this was not true for 

the vertical CM position (V
UCM

 ≈ V
ORT

). This effect was strongest in the middle of 
the sit-to-stand movement and when standing up under challenging task constraints 
such as on a narrow support surface, compared to a normal support surface (Figure 
5) (Reisman et al., 2002a; Scholz et al., 2001). When the sitting down portion of 
the task was examined, where subjects could not directly see the seat behind them, 
stabilization of the vertical position of the CM was also observed by the use of flex-
ible patterns of joint combinations (i.e., V

UCM
 > V

ORT
;
 
Reisman et al., 2002b). Thus, 

the use of flexible patterns of joint coordination to stabilize different task-related 
variables depended on the phase and context of the task’s performance.

Example Application of UCM Analysis: Multi-Finger Force 
Production

The non-independence of the individual fingers during force-production tasks, 
mentioned earlier, must be taken into account in analysis of multi-finger synergies. 
This was done in a series of studies by using the force mode approach described 
in the earlier section “What are the elemental variables that form the basis for 

Figure 5—Variance of joint angles reflecting flexible patterns of joint coordination (V
UCM

), 
consistent with a stable value of the horizontal path of the body’s center of mass, and vari-
ance leading to fluctuations in the horizontal CM path (V

ORT
) when standing up from either 

a narrow (thick solid line) or normal (thin solid line) base of support, computed at each 
percentage of normalized movement time. V

ORT
 for narrow base is represented by a thick 

dashed line, while that for the normal base is represented by a thin dashed line. Reproduced 
with permission from Scholz et al., 2001.
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synergies?” The experiments studied whether flexible patterns of force modes during 
multi-finger pressing tasks could be related to stabilization of such performance 
variables as total force and total moment produced by finger forces with respect 
to the mid-point between the two most lateral fingers involved in the task. In most 
experiments, the subjects were required to produce certain time profiles of the total 
force (Latash et al., 2001, 2002b; Scholz et al., 2002). It was expected, therefore, 
that the analysis would reveal structure of the mode variance compatible with total 
force stabilization. However, the results were rather unexpected. During fast cyclic 
force production with two, three, or four fingers, the modes co-varied across cycles 
to stabilize total force only within a narrow range of the force cycle around the 
peak total force (Figure 6, left panel), while they stabilized the moment of force 
over most of the cycle (Figure 6, right panel). This occurred despite the fact that 
the subjects received instruction and visual feedback on the total force but not on 
the total moment. Note that in three- and four-finger tasks, the motor abundance of 
the system allows the stabilization of both force and moment at the same time.

These seemingly unexpected findings were interpreted as reflecting patterns 
of multi-finger interaction elaborated by the CNS during the lifetime based on 
everyday tasks, such as eating with a spoon, drinking from a glass, writing with a 
pen, etc. which impose stronger constraints on permissible errors in total moment 
than in total force. For example, when taking a sip from a glass, grip force should 
only be above the slipping threshold and below the crushing threshold. These are 
relatively weak constraints. The moment of force, however, needs to be controlled 
much more precisely if one wants to avoid spilling the contents of the glass.

The Task Dependency of the Uncontrolled Manifold (UCM)

The structure of variance observed through the UCM approach is task dependent. For 
instance, when the arm is used to point at targets in three dimensions, the Cartesian 
position of the pointer tip is stabilized by structured variance in joint space (Tseng et 

Figure 6—Left panel: Variance of finger force modes at every 10% of the force oscillation 
that is consistent with a stable value of the performance variable total force (V

UCM
, solid 

line) and variance of finger force modes that leads to variability of total force (V
ORT

; dashed 
line); Right panel: Same components of finger force variance evaluated with respect to the 
performance variable force moment. Error bars are standard errors of the means.
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al., 2002, 2003). By contrast, when that same effector is used to shoot at a target with 
a hand-held laser gun, then the spatial position of the gun is no longer stabilized by 
co-varied changes in joint angles, particularly during the second half of the movement, 
crucial for shooting accuracy (Scholz et al., 2000). Instead, a different two-dimensional 
constraint that determines if the target will be hit by the gunshot generates a UCM that 
captures most of the joint angle variance during that stage of the movement.

Multiple performance variables should therefore be tested to explore the task-
dependent structure of variance in the space of elemental variables. The method 
provides a means to quantify the levels of stabilization of different variables. 
Quantitative measures of synergies, such as the normalized difference [V

UCM 
– V

ORT
]/V

TOTAL
 or the ratio V

UCM
/V

ORT
 can be used to help separate synergies (V

UCM 
> V

ORT
) from “non-synergies” (V

UCM 
≤ V

ORT
).

Such information, in conjunction with analyses that address changes in the 
sharing pattern across time or changes in other task parameters can provide useful 
insights about a variety of motor phenomena, including motor learning (Domkin et 
al., 2002, 2005; Kang et al., 2004; Yang & Scholz, 2005) and deficits in coordination 
in patients and atypically developing persons (Reisman & Scholz, 2003; Scholz et 
al., 2003) as well as among elderly subjects (Shinohara et al., 2004).

Note that matrix factorization procedures such as PCA applied to the move-
ment data across time may serve as an important first step to the UCM method 
by helping to identify the elemental variables (modes). These modes can then be 
used to experimentally estimate the Jacobian, relating small changes in modes to 
changes in specific performance variables, when an analytical model is not avail-
able, as a precursor to UCM analysis. This approach has recently been used by 
Krishnamoorthy et al. (2003a, 2003b) and extended by Danna-Dos-Santos et al., 
(2007) to study how flexible patterns of muscle activation relate to changes in the 
center of pressure during the performance of postural tasks.

One limitation of the UCM method as formalized here is that it is based on 
decomposing variance into linear subspaces even though the UCM itself may be 
curved and thus highly nonlinear. An alternative to the UCM method is an approach 
based on the creation of uncorrelated, surrogate data sets from the original data 
(Kudo et al., 2000; Martin et al., 2002; Müller & Sternad, 2003, 2004; Latash et 
al., 2004) that can deal with non-linear forms of correlation. Unlike the UCM 
approach, this method does not perform the variance analysis in the space of 
elemental variables but in the space of task-relevant performance variables, in which 
the variances in the original and in a surrogate data set are compared. Recently, a 
related approach has been developed by Cusumano and Cesari (2006) that tries to 
link manifold geometry analysis and analysis of variance by introducing a notion 
of goal-equivalent manifold (GEM). This approach considers, in particular, such 
factors as sensitivity of solutions within the UCM (different sharing patterns) to 
deviations of elemental variables.

General Discussion

Theoretical Approaches to Synergy

Theoretical work on the DOFs problem has focused largely on the problem of 
selecting a solution from the range of possible solutions, in particular, through 
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optimization principles (e.g., Uno et al., 1989; Hasan, 1986; Rosenbaum et al., 
1995; Lan, 1997). The stability and flexibility aspect of the DOFs problem, and the 
associated variance analysis, have not been central to most theoretical accounts.

Harris and Wolpert (1998) address variance by hypothesizing that an optimal 
trajectory is selected by minimizing signal-dependent terminal variance at the target 
of reaching and of saccadic eye movements. Their account has not been extended 
to redundant effector systems. Todorov and Jordan (2002; Todorov, 2004), by 
contrast, deal with redundant systems by postulating a “minimal intervention” 
principle within the framework of optimal feedback control. The model minimizes 
the weighted sum where the first summand is the squared difference between a 
function of effectors signals and its preset value, and the second summand is the 
effort defined as the variance of the control signals. However, as the authors of this 
approach admit, the computational part of the model introduces substantial com-
plications. There are other disadvantages of systems with feedback loops such as 
time delays and a chance of self-excitation for some values of system parameters. 
Nevertheless, this principle is conceptually consistent with the UCM approach. 
The probability distributions of observed states of elemental variables generated 
by the stochastic optimal control model are elongated in directions compatible 
with the UCM hypothesis (i.e., V

UCM 
> V

ORT
). One limitation of the model is that it 

does not clearly address how the CNS re-computes a new optimal trajectory plan 
at any moment in time based on the (sensed?) current state of the effector. Such 
optimization involves knowing the control effort associated with different pos-
sible trajectories, which includes a complete model of the effector. It may also be 
expected to involve substantial time delays in the sensory feedback signals, which 
is not compatible with recent studies (see the section “Issues of Timing in Synergy 
Formation,” below).

A less formal, more physiologically based approach has been pursued by 
Bullock et al. (1993), who proposed a neuronal network that learns coordinate trans-
formations from end-effector to joint coordinates, in effect developing a structure 
that selects one solution out of a set of “motor-equivalent” solutions. An analysis 
of variance and of underlying noise sources was not a topic in that work, although 
extending the model to address the structure of variance seems feasible.

Another physiologically based model has recently been proposed by Latash 
et al. (2005) using, as an example, multi-finger force production tasks. Within the 
model, outputs of individual neurons are mapped onto each elemental variable. 
This “central back-coupling model” is based on a plausible neural mechanism of 
self- and lateral inhibition (e.g., similar to the system of Renshaw cells) among the 
elements (output neurons). As illustrated in Figure 7, a command signal (level A) 
is being distributed over a set of elements producing a particular sharing pattern. 
This signal is assumed to be noisy (Gaussian noise with zero average magnitude 
is added) leading to inputs to individual neurons (level B). The output of the level 
B neurons m is transformed by an enslaving matrix resulting in finger forces: f = 
[E]m. The output of each of the level B elements also serves as input into an inter-
neuron (IN in Figure 7, level C), which projects back to all the level B neurons. 
These back-coupling loops are characterized by gains (g

ij
 comprising a matrix G), 

time delays, and thresholds. The model generates similar variance structure as 
predicted by the UCM hypothesis. Moreover, the model has been able to replicate 
the finding of a time delay of the order of 100–300 ms between the initiation of a 
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slow ramp force production and the emergence of a force-stabilizing synergy (see 
the right panel of Figure 7; cf. Shim et al., 2003; Latash et al., 2004).

A comprehensive model of both features of synergies in redundant effector 
systems has been developed by Martin and colleagues (Martin, 2005; Martin et 
al., 2004). A biomechanical model of the effector system is augmented by physi-
ologically based muscle models. At each joint, the group of agonist and antagonist 
muscles is described by a simplified version of the nonlinear equilibrium-point 
model of Gribble et al. (1998). The equilibrium points of these muscle-joint sys-
tems are considered dynamical variables, whose temporal evolution is described 
by a dynamical neural network. The network receives input from a set of neural 
oscillators that generate a timing signal defining the progression of the end-effec-
tor along its trajectory. The model has been validated in experiments involving 
planar movement of a four-DOF system to various targets. In particular, the model 
has been able to account for the structure of variance observed in the experiment, 
including the amount and temporal evolution of self-motion (joint motion that does 
not move the end-effector) and of the variance within the UCM during the move-
ment. In the model, three factors contribute to the observed structure of variance: 
First, the neuronal computations of equilibrium-point trajectories are assumed to 
be noisy. Second, the dynamics of the equilibrium points within the two subspaces 
(UCM and orthogonal to the UCM) of joint space are assumed to be decoupled. 

Figure 7—A scheme illustrating the back-coupling (CBC) hypothesis. Control signal (A) 
is shared among four “neurons” (B) with added noise. The outputs of the “neurons” excite 
inhibitory “interneurons” (C) that project back to all four “neurons” at the B level. Further, 
the outputs of the B “neurons” are modified with a finger interconnection matrix (enslaving 
matrix) producing finger forces. Modified with permission from Latash et al., 2005.
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Third, the realized joint configuration is fed back into the neural computation of 
the equilibrium trajectory, keeping the performance variable unchanged. This 
back-coupling could be viewed as a neural mechanism that performs something 
akin to Todorov and Jordan’s (2002) “minimum intervention” principle. From the 
perspective of Martin et al.’s theoretical account, the structure of variance reveals 
control priorities, which enhance the flexibility of the system to satisfy multiple task 
constraints and enable the system to satisfy these constraints in varying contexts 
and for varying initial configurations.

A feed-forward control model has recently been suggested by Goodman and 
Latash (2006). The model assumes the existence of two input signals at an upper 
level of the control hierarchy, related and unrelated to a task variable. Knowledge 
of the Jacobian of the system is assumed at the level of generation of elemental 
variables. Several phenomena have been simulated including data point distributions 
corresponding to presence and absence of force-stabilizing synergies in two-finger 
tasks, changes in synergies with practice, and changes in synergy indices in prepa-
ration to a fast action (cf. Shim et al., 2005; Olafsdottir et al., 2005).

The basic notions underlying the UCM approach and reflected in the mentioned 
models can be traced back to ideas of Gelfand and Tsetlin (1966) who assumed 
that movements were controlled in a hierarchical but not prescriptive manner, so 
that relations among variables at a hierarchically lower level ensured stable motor 
performance with respect to a performance variable produced by a hierarchically 
higher level. More recently, Gelfand and Latash (1998, 2002) suggested that all the 
DOFs at all levels always participate in all the tasks ensuring both stability and flex-
ibility of the performance, a hypothesis they call the “principle of abundance.”

Possible Neurophysiological Foundations of Synergies

There is ample evidence that task-specific and relatively high-level features of 
motor tasks are represented in the brain. Studies of cortical neuronal populations 
have revealed patterns of activity related to performance variables such as the 
spatial trajectory of the effector’s endpoint or the force vector applied by an end-
effector (Georgopoulos et al., 1982; Schwartz, 1993; Coltz et al., 1999; Cisek & 
Kalaska, 2005).

Studies with spinal cord electrical stimulation have been interpreted as pointing 
at the existence of motor “primitives” in the spinal cord that produce certain force 
fields at the endpoint of a hindlimb (Hart & Giszter, 2004; Giszter et al., 1993; 
Giszter & Kargo, 2000; Kargo & Giszter, 2000; Mussa-Ivaldi et al., 1994). Recently, 
similar effects of micro-stimulation of the spinal cord in cats have been reported 
(Lemay & Grill, 2004). Most studies of motor primitives measured forces produced 
by the endpoint of a limb in isometric conditions; making these findings unlikely 
to generalize for non-isometric conditions. Note also that by limiting analysis to 
end-effector force fields these studies did not address how redundant effectors 
generate these forces (although such analysis is possible; see Gandolfo & Mussa-
Ivaldi, 1993). Another series of studies have shown that spinal frogs can produce 
a successful wiping response on the first trial after a joint has been constrained 
(Berkinblit et al., 1986). These observations provide evidence that flexible patterns 
of joint and muscle coordination are used to stabilize task-relevant performance 
even at this low level of control.
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A number of supraspinal structures, such as the cerebellum and the motor 
cortex, have been viewed as potential contributors to motor synergies (Houk & 
Gibson, 1987; Bloedel, 1992; Lemon et al., 1998; Schieber, 2001; Holdefer & 
Miller, 2002; Kargo & Nitz, 2003; Thach & Bastian, 2003). In particular, phenom-
ena of divergence and convergence in cortical representations of individual digits 
of the human hand have been discussed as providing the neural basis for multi-
finger synergies (Lemon et al., 1998; Schieber, 2001; Schieber & Santello, 2004), 
always in the sense of the sharing aspect of synergies. Single neurons in the medial 
vestibulospinal tract have been shown to innervate functional sets of neck muscles 
possibly contributing to the head movement synergy (Sugiuchi et al., 2003).

The basis of flexibility is also very broad. Studies in which individual motor 
elements were perturbed within a variety of complex actions have revealed fast, 
online correction mechanisms (Abbs & Gracco, 1984; Kelso et al., 1984; Latash, 
2000). There is the potential for flexibility and stability to arise based on neu-
rophysiological principles. Indeed, dynamic stability is a fundamental feature 
of the biophysics of neuronal nets, which restores the state of the network after 
an external or internal perturbation (e.g., Wilson, 1999). This fact is exploited 
in recurrent neuronal networks that afford continuous linkage to sensory inputs. 
The basis of dynamic stability is thus entirely generic in the CNS. However, as of 
now stability is the aspect of synergies which has the least specific grounding in 
neurophysiology.

An exception to the last statement is the central back-coupling model of 
synergies described earlier (see the section “Theoretical Approaches to Synergy”; 
Latash et al., 2005). It uses short-latency back-coupling as a particular mechanism 
to ensure error compensation among elemental variables, one of the signatures of 
flexibility. Short-latency negative feedback loops, also addressed as lateral inhibi-
tion and surround suppression, are rather common in the CNS. They have been 
described and/or postulated for sensory systems of different modalities (Lund et 
al., 2003; Schoppa & Urban, 2003; Wehr & Zador, 2003; Ozeki et al., 2004) as 
well as for brain circuits traditionally associated with the production of movement 
(Fukai, 1999). The well-known system of Renshaw cells (recurrent inhibition) 
may be viewed as a particular instantiation of this scheme. Renshaw cells have 
recently become incorporated into several hypotheses on the control of movement 
(van Heijst et al. 1998; Uchiyama et al., 2003). There is substantial variability in 
the organization and the strength of inhibitory projections mediated by Renshaw 
cells in different muscles (Katz et al., 1993). These projections can be modulated 
pharmacologically and by descending projections (Mattei et al., 2003; Hultborn 
et al., 2004), which may be the basis for how Renshaw cells stabilize the output of 
a motoneuronal pool in a way that could be muscle and task specific (cf. Hultborn 
et al., 2004).

Issues of Timing in Synergy Formation

The two aspects of synergies, sharing and flexibility/stability, can be related to 
the generation of a time course of a performance variable (sharing it among the 
elemental variables) and stabilization of the combined output of the elemental 
variables to actually achieve the sequence of states (stability/flexibility). We will 
address these two components as “timing” and “control.” The theory of optimal 
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control is really about the former, while the theory of feedback control systems is 
about the latter (Sontag, 1990).

The concept of the equilibrium trajectory (Feldman, 1986; Feldman & Levin, 
1995; Feldman & Latash, 2005) postulates a separation between the two compo-
nents, specification of the time course of the equilibrium trajectory and stabilization 
of a movement modeled through more or less sophisticated variants of the equilib-
rium-point hypothesis (Feldman et al., 1998; Latash & Gottlieb, 1991; Gribble et 
al., 1998). Other motor control models have also frequently invoked the concept 
of a desired trajectory, often assumed to arise from an optimization principle 
(Miyamoto et al., 1988; Kawato, 1990, 1999), which feeds into the more complex 
control system that may include forward and/or inverse modeling.

During slow movements, the equilibrium or desired trajectory can be seen as 
a series of postural states, to which the control system steers the effector system 
independently of its previous motor state. For fast movements, however, variance 
at a given phase may be affected by earlier states.

One of the studies of multi-finger force production showed that the temporal 
evolution of variance within the UCM, V

UCM
 followed closely the evolution of 

variability of the total force, while the temporal evolution of V
ORT

 was correlated 
with the first force derivative (Latash et al., 2002c). These observations suggest that 
variation of a timing parameter across trials may be mostly reflected in V

ORT
 while 

errors in the magnitude of finger forces were mostly reflected in V
UCM

.
Recently, Goodman and colleagues (Goodman et al., 2005) have developed 

for multi-element actions an earlier suggested model of motor variability based 
on assumed errors in the timing and amplitude parameters (Gutman & Gottlieb, 
1992; Gutman et al., 1993). They have demonstrated, in particular, that variance 
in the space of elemental variables (force modes for the task of fast multi-finger 
force production) can show non-spherical distributions elongated along the direc-
tion of the first derivative of force in the absence of any specific control strategy. 
These results suggest that patterns of co-variation among elemental variables 
during fast actions should be interpreted with caution since they may conceal a 
synergy stabilizing a performance variable among elemental variables because of 
the effects of timing errors.

Learning Motor Synergies

Where do synergies come from, and how do they arise? Many of the synergies that 
have been experimentally identified are probably deeply ingrained as they are the 
basis for the most common motor activities such as upright balance or reaching for 
objects. Others are more likely derived from more specific and learned skills such as 
shooting or throwing a Frisbee. Those of us who have tried to influence synergies by 
shaping environments know that it is not trivial to do so. Just because a movement 
environment affords, for instance, to relax the control of particular DOFs, this does 
not mean that the CNS will actually release the associated DOFs from control. In 
the experiment of Scholz and Schöner (1999), for example, we explored a condition 
in which participants made the sit-to-stand transition with their feet in tightly fit-
ting ski boots that were fit into ski bindings and attached to the floor. This released 
participants, in principle, from control of the horizontal position of their center of 
mass in the anterior-posterior direction as they could transmit angular momentum 
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in this direction without risk of falling over. Just providing this constraint did not 
lead to a restructuring of motor variance, however. Only skilled skiers were able 
to adapt to this condition and to alter their patterns (unpublished).

Acquiring motor skills has, of course, been a central topic of research in motor 
control for a long time (Schmidt, 2004). Different conceptions of learning have been 
considered. The earliest relevant approach might be Bernstein’s theory of staged 
skill acquisition (Bernstein, 1996), which stated that practicing a movement leads 
to a sequence of changes in the number of DOFs. Early stages of skill acquisition 
were assumed to be associated with a reduction in the number of DOFs, which was 
assumed to make it easier for the controller to deal with the task. Additional DOFs 
were to be released or recruited over the course of learning. This view has not been 
challenged, to our knowledge, and many studies describe changes in the number 
of DOFs with practice. Both reducing the amount of motion in a particular DOF 
(“freezing”) and increasing the amount of motion (DOF “freed” or “released”) with 
practice have been reported (Newell et al., 2003). Note, however, that keeping one 
joint of a multi-joint effector motionless during a fast movement requires precise 
modification of the control signals to muscles crossing the joint (Koshland et al., 
1991; Latash et al., 1995). Moreover, the number of DOFs does not change when 
some of them have smaller amounts of movement within a motor task.

Much recent work on motor learning has been based on the paradigm of expos-
ing people to unknown force fields or sensory distortions and analyzing adaptation 
to such conditions (Shadmehr & Mussa-Ivaldi, 1994). The theoretical setting for 
such work has been that of learning as the elaboration of new or the refinement of 
existing internal models (Wolpert et al., 2001; Shadmehr, 2004).

A recent study used the adaptation paradigm to look at changes in patterns of 
joint variance to a velocity-dependent force field when a multi-joint reaching task 
was performed by a kinematically redundant limb (Yang et al., 2007). The study 
showed, in particular, an increase in the variability within the UCM (V

UCM
) after 

the adaptation. Since this variability, by definition, has no effect on the endpoint 
trajectory, its increase seems to pose major problems for any idea of a refined internal 
model designed to optimize task performance in the new conditions.

An approach to motor learning closer in spirit to the problem of learning syner-
gies has been developed in the domain of relative timing. When a new pattern of 
relative timing of bimanual movements is learned, for instance, the stability of the 
pattern increases in time, with an associated reduction in variability (Schöner et 
al., 1992; Zanone & Kelso, 1997). Moreover, after learning the new pattern, other 
patterns of relative timing are systematically biased toward the learned patterns 
and are more stable the closer they are to the learned pattern. Similarly, practice 
has been shown to lead to changes in the correlation among motions of body seg-
ments occurring in time (Vereijken et al., 1992). Unfortunately, these studies have 
generally examined changes in the coordination of non-redundant sets of joints 
and, therefore, do not address how flexibility in redundant motor patterns emerges 
during learning.

Within our current framework, we conceive of learning as potentially leading to 
changes in either component of synergies, sharing pattern and/or flexibility/stability 
reflected in patterns of co-variation of elemental variables. Thus, an important area 
of investigation is to determine whether, how, and in what sequence the two features 
of synergies are learned. Can practice lead to better or worse stabilization of an 
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important performance variable by changing the relations among the elemental 
variables?

Assuming that learning ultimately leads to stabilization of task-relevant perfor-
mance variables, there are three possible scenarios for how the structure of variance 
in the space of elemental variables may evolve during learning: (a) V

ORT
 (task-rel-

evant variance) is reduced more strongly than V
UCM

, leading to a strengthening or 
even the first emergence of a synergy stabilizing the performance variable. V

UCM
 

may be reduced less, remain constant or even increase in this scenario; (b) V
UCM

 
is reduced along with V

ORT
, keeping the strength of the synergy (for example, the 

ratio V
UCM

/V
ORT

) relatively invariant; and (c) V
UCM

 is reduced more strongly than 
V

ORT
, leading to a reduction of indices of synergy.
A number of recent studies of learning have begun to shed light on these 

issues. In particular, experiments have shown that all three scenarios are possible 
at different stages of motor learning.

Scenario (a) amounts to creating or learning the synergy. This may involve 
learning anew or refining a Jacobian to be able to form an appropriate structure 
that stabilizes salient performance variables, i.e., forming a UCM (e.g., produc-
ing a function of finger forces that is not their sum, Kang et al., 2004). This may 
also involve elaborating an optimal sharing pattern of elemental variables given a 
set of constraints (e.g., prehension tasks constrained by requirements to keep the 
total force and the total moment of forces within a particular range; Zatsiorsky and 
Latash, 2004) and maybe other goals such as comfort, smoothness of trajectory, 
etc. (e.g., as in pointing and multi-finger force production tasks; Domkin et al., 
2002, 2005; Latash et al., 2003).

Results consistent with scenario (a) were observed in a study of the effects of 
practice of an accurate multi-finger force production task in persons with Down 
syndrome (DS; Latash et al., 2002a; Scholz et al., 2003). Participants produced ramp 
profiles of the total force while pressing on force sensors with all four fingers of the 
dominant hand. Prior to practice, persons with DS showed predominantly positive 
co-variation among individual finger modes that destabilized the total force, while 
the pronation/supination moment of force was stabilized. After 2 days of practice, 
these persons learned to use their fingers more flexibly and showed improved 
co-variation of force modes, which stabilized the total force profile without a con-
comitant deterioration in the moment stabilization. These patterns of co-variation 
of force modes were similar to those observed in persons without DS.

In the study of Frisbee throwing (Yang & Scholz, 2005), both V
UCM

 and V
ORT

 
decreased over practice. However, the decrease in V

UCM
 was significantly smaller 

than that in V
ORT

 consistent with scenario (a). This change was limited to synergies 
that stabilized movement direction (deviations from a straight line path to the target) 
and the hand’s orientation to the target. The relation V

UCM
 > V

ORT
 with respect to 

stabilization of movement extent or hand path velocity persisted from the outset and 
did not change with practice, more consistent with scenario (b). In both experiments, 
the structure V

UCM 
> V

ORT
 was present from the onset of practicing the task.

Results consistent with scenarios (b) and (c) were observed in studies of the 
effects of practice on multi-joint, bi-manual pointing (Domkin et al., 2002, 2005). 
During a rather simple planar task of placing the tip of the pointer held by one hand 
into the center of a target held by the other hand (Domkin et al., 2002) an improve-
ment in overall accuracy was reflected in a decrease in V

ORT
 that was accompanied 
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by an even larger decline in V
UCM

 [consistent with scenario (c)]. When a similar 
task was made more complex by using three-dimensional movements and three 
possible targets, the relative declines in V

ORT
 and V

UCM
 became similar [consistent 

with scenario (b)].
Experiments with accurate multi-finger force production have suggested the 

existence of two stages in the effects of practice, not in terms of freezing or releas-
ing of DOFs, but in terms of changes in the structure of variance (Latash et al., 
2003; Kang et al., 2004). The first stage is associated with a greater drop in V

ORT
 

than in V
UCM

 computed for the stabilization of the important performance variable 
leading to an increase in the index of a corresponding synergy, consistent with 
scenario (a). Further practice led to a larger drop in V

UCM
 than in V

ORT
, consistent 

with scenario (c).
A drop in an index of a synergy could be a bottom effect if the stability of the 

task-relevant performance variable has reached its maximum leading to minimal 
V

ORT
. On the other hand, a decrease in an index of stability of a performance variable 

may indeed be a purposeful outcome of learning. Stability of performance comes at 
a price of decreased flexibility and adaptability (see Hasan, 2005). In particular, if 
a task requires changing a performance variable quickly when required by external 
conditions, increasing its stability may be counter-productive and learning may 
indeed lead to a drop in indices of synergies stabilizing that variable.

Conclusions
What is the contribution of the refined concept of synergy to our understanding 
of the control of redundant systems? We think it offers a broader approach to the 
DOF problem. Binding DOFs into sharing patterns reduces the need to generate 
detailed time courses for all elemental variables in a given task. This has been 
widely recognized by previous researchers. However, the task-specific structure of 
variability observed in multi-DOF systems forces us to also account for how syner-
gies provide for stabilization against perturbations while at the same time allowing 
for the amazing adaptability and flexibility of voluntary movement. We propose 
that this is achieved in two ways. First, the synergies are task-dependent. Through 
learning processes, the DOFs are bound not into universal “motor primitives” (that 
seem more similar to the concept of “modes”), but into task-specific synergies, 
whose activation by a single, potentially simple timing signal leads to competent 
performance. Second, the binding is flexible itself, stably linking combinations of 
DOFs that are essential to achieve the task, but releasing from tight control com-
binations of DOFs that lead to the same task performance. This makes it possible 
to achieve motor goals under varied environmental circumstances, coming from 
different initial postures, or even simultaneously achieving multiple tasks.

Although our knowledge to date is still limited, it is plausible that the extent 
to which flexibility is challenged during practice plays a major role in the learning 
process. What is being learned, in other words, is not only a particular movement 
in joint space, but rather how to achieve a motor goal from varied initial conditions 
and in the face of varied environmental constraints [very close to the concept of 
dexterity in Bernstein (1996)].

Such insights into learning might become important with respect to pathologies 
and strategies of their treatment. For instance, helping a stroke patient to actively 
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explore flexibility rather than merely learning a rigid substitute solution to a motor 
problem could shift emphasis in movement therapy. At a more basic level, however, 
the first step may be to recognize that the characterization of movement patterns 
and their pathologies needs to look at two aspects, sharing and stability/flexibility, 
or, simply put, the mean but also the variance (cf. Reisman & Scholz, 2003)!

Despite the many challenges still ahead of us, we feel that the refined concept 
of synergy may be an element of a language for motor control, the inadequacy of 
which has been considered a chief problem for the discipline (Gelfand, 1991). Com-
bining methods that establish sharing patterns (e.g., matrix factorization methods 
such as PCA) with methods that establish patterns of stability and flexibility (e.g., 
the UCM method) makes it possible to characterize synergies, track their evolution 
during learning, and diagnose their pathological failure. 
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