Pubblicazioni

ASCHOPLEX: A generalizable approach for the automatic segmentation of choroid plexus  (2024)

Autori:
Visani, Valentina; Veronese, Mattia; Pizzini, Francesca B; Colombi, Annalisa; Natale, Valerio; Marjin, Corina; Tamanti, Agnese; Schubert, Julia J; Althubaity, Noha; Bedmar-Gómez, Inés; Harrison, Neil A; Bullmore, Edward T; Turkheimer, Federico E; Calabrese, Massimiliano; Castellaro, Marco
Titolo:
ASCHOPLEX: A generalizable approach for the automatic segmentation of choroid plexus
Anno:
2024
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Formato:
Elettronico
Referee:
No
Nome rivista:
Computers in Biology and Medicine
ISSN Rivista:
0010-4825
N° Volume:
182
Intervallo pagine:
1-12
Parole chiave:
Choroid plexus; Deep neural networks; Ensemble; Magnetic resonance imaging; Semantic segmentation
Breve descrizione dei contenuti:
Background: The Choroid Plexus (ChP) plays a vital role in brain homeostasis, serving as part of the Blood-Cerebrospinal Fluid Barrier, contributing to brain clearance pathways and being the main source of cerebrospinal fluid. Since the involvement of ChP in neurological and psychiatric disorders is not entirely established and currently under investigation, accurate and reproducible segmentation of this brain structure on large cohorts remains challenging. This paper presents ASCHOPLEX, a deep-learning tool for the automated segmentation of human ChP from structural MRI data that integrates existing software architectures like 3D UNet, UNETR, and DynUNet to deliver accurate ChP volume estimates. Methods: Here we trained ASCHOPLEX on 128 T1-w MRI images comprising both controls and patients with Multiple Sclerosis. ASCHOPLEX's performances were evaluated using traditional segmentation metrics; manual segmentation by experts served as ground truth. To overcome the generalizability problem that affects data-driven approaches, an additional fine-tuning procedure (ASCHOPLEXtune) was implemented on 77 T1-w PET/MRI images of both controls and depressed patients. Results: ASCHOPLEX showed superior performance compared to commonly used methods like FreeSurfer and Gaussian Mixture Model both in terms of Dice Coefficient (ASCHOPLEX 0.80, ASCHOPLEXtune 0.78) and estimated ChP volume error (ASCHOPLEX 9.22%, ASCHOPLEXtune 9.23%). Conclusion: These results highlight the high accuracy, reliability, and reproducibility of ASCHOPLEX ChP segmentations.
Id prodotto:
141296
Handle IRIS:
11562/1138712
ultima modifica:
2 ottobre 2024
Citazione bibliografica:
Visani, Valentina; Veronese, Mattia; Pizzini, Francesca B; Colombi, Annalisa; Natale, Valerio; Marjin, Corina; Tamanti, Agnese; Schubert, Julia J; Althubaity, Noha; Bedmar-Gómez, Inés; Harrison, Neil A; Bullmore, Edward T; Turkheimer, Federico E; Calabrese, Massimiliano; Castellaro, Marco, ASCHOPLEX: A generalizable approach for the automatic segmentation of choroid plexus «Computers in Biology and Medicine» , vol. 1822024pp. 1-12

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi