Pubblicazioni

Impact of model selection procedure on Deep Neural Networks ensemble for the Choroid Plexus segmentation in Multiple Sclerosis  (2023)

Autori:
Visani, Valentina; Natale, Valerio; Colombi, Annalisa; Tamanti, Agnese; Bertoldo, Alessandra; Marjin, Corina; Ricciardi, GIUSEPPE KENNETH; Pizzini, Francesca Benedetta; Calabrese, Massimiliano; Castellaro, Marco
Titolo:
Impact of model selection procedure on Deep Neural Networks ensemble for the Choroid Plexus segmentation in Multiple Sclerosis
Anno:
2023
Tipologia prodotto:
Contributo in atti di convegno
Tipologia ANVUR:
Contributo in Atti di convegno
Lingua:
Inglese
Formato:
Elettronico
Titolo del Convegno:
8th National Congress of Bioengineering, GNB 2023
Luogo:
Padova
Periodo:
21-23 June 2023
Casa editrice:
Patron
Intervallo pagine:
1-4
Parole chiave:
Choroid Plexus; Deep Neural Networks; Multiple Sclerosis; Semantic Segmentation
Breve descrizione dei contenuti:
The Choroid Plexus (ChP) is a brain vascular tissue involved in regulatory processes. ChP Volume (ChPV) modifications are related to neurodegenerative disorders. Therefore, ChPV, that can be obtained from manual segmentation of brain MRI, is an imaging biomarker candidate to monitor disease evolution. This work proposes a method for the automatic segmentation of ChP based on hyperparameters optimization of Deep Neural Networks (DNNs). Twenty-Seven hyperparameters and architectures combinations were trained on T1-w MRI with two different selection strategies: select the best models using the routinely used Dice Coefficient and combining it to the Absolute Percentage Volume Difference. The selection of the ten best models was made on bias and variance of Absolute Percentage Volume Difference and best DNNs were ensembled by majority voting for both selection strategies. The proposed ensemble models outperform single DNNs (Dice Coefficient for both ensembles: 0.81±0.07; Percentage Volume Difference - ensemble Dice: 0.41±10.75%; ensemble Dice&Volume: -0.05±10.49%). Ensemble segmentations obtained using the combination of Dice and Absolute Percentage Volume Difference are preferable since the variance obtained in the testing phase is slightly lower than the commonly used Dice metric. Therefore, the proposed ensemble of DNNs, selected exploiting both Dice and Absolute Percentage Volume Difference, is a promising tool to obtain automatic quantification of the ChPV. © 2023 Convegno Nazionale di Bioingegneria. All rights reserved.
Pagina Web:
https://www.grupponazionalebioingegneria.it/it/publication/eighth-national-congress-of-bioengineering-proceedings-2023/
Id prodotto:
143076
Handle IRIS:
11562/1146811
ultima modifica:
11 dicembre 2024
Citazione bibliografica:
Visani, Valentina; Natale, Valerio; Colombi, Annalisa; Tamanti, Agnese; Bertoldo, Alessandra; Marjin, Corina; Ricciardi, GIUSEPPE KENNETH; Pizzini, Francesca Benedetta; Calabrese, Massimiliano; Castellaro, Marco, Impact of model selection procedure on Deep Neural Networks ensemble for the Choroid Plexus segmentation in Multiple Sclerosis  in 8th National Congress of Bioengineering, GNB 2023. ProceedingsPatronAtti di "8th National Congress of Bioengineering, GNB 2023" , Padova , 21-23 June 2023 , 2023pp. 1-4

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi