Pubblicazioni

Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques  (2017)

Autori:
Squarcina, Letizia; Castellani, Umberto; Bellani, Marcella; Perlini, Cinzia; Lasalvia, Antonio; Dusi, Nicola; Bonetto, Chiara; Cristofalo, Doriana; Tosato, Sarah; Rambaldelli, Gianluca; Alessandrini, Franco; Zoccatelli, Giada; POZZI MUCELLI, Roberto; Lamonaca, Dario; Ceccato, Enrico; Pileggi, Francesca; Mazzi, Fausto; Santonastaso, Paolo; Ruggeri, Mirella; Brambilla, Paolo
Titolo:
Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques
Anno:
2017
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Formato:
A Stampa
Referee:
Nome rivista:
Neuroimage
ISSN Rivista:
1053-8119
N° Volume:
145
Numero o Fascicolo:
(Pt B)
Editore:
Elsevier
Intervallo pagine:
238-245
Parole chiave:
affective psychosis; cortical thickness; frontal; MRI; schizophrenia; temporal cortex
Breve descrizione dei contenuti:
First episode psychosis (FEP) patients are of particular interest for neuroimaging investigations because of the absence of confounding effects due to medications and chronicity. Nonetheless, imaging data are prone to heterogeneity because for example of age, gender or parameter setting differences. With this work, we wanted to take into account possible nuisance effects of age and gender differences across dataset, not correcting the data as a pre-processing step, but including the effect of nuisance covariates in the classification phase. To this aim, we developed a method which, based on multiple kernel learning (MKL), exploits the effect of these confounding variables with a subject-depending kernel weighting procedure. We applied this method to a dataset of cortical thickness obtained from structural magnetic resonance images (MRI) of 127 FEP patients and 127 healthy controls, who underwent either a 3Tesla (T) or a 1.5T MRI acquisition. We obtained good accuracies, notably better than those obtained with standard SVM or MKL methods, up to more than 80% for frontal and temporal areas. To our best knowledge, this is the largest classification study in FEP population, showing that fronto-temporal cortical thickness can be used as a potential marker to classify patients with psychosis.
Pagina Web:
https://dx.doi.org/10.1016/j.neuroimage.2015.12.007
Id prodotto:
90543
Handle IRIS:
11562/935100
ultima modifica:
11 novembre 2022
Citazione bibliografica:
Squarcina, Letizia; Castellani, Umberto; Bellani, Marcella; Perlini, Cinzia; Lasalvia, Antonio; Dusi, Nicola; Bonetto, Chiara; Cristofalo, Doriana; Tosato, Sarah; Rambaldelli, Gianluca; Alessandrini, Franco; Zoccatelli, Giada; POZZI MUCELLI, Roberto; Lamonaca, Dario; Ceccato, Enrico; Pileggi, Francesca; Mazzi, Fausto; Santonastaso, Paolo; Ruggeri, Mirella; Brambilla, Paolo, Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques «Neuroimage» , vol. 145 , n. (Pt B)2017pp. 238-245

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi